Table of Contents
Physics Research International
Volume 2012, Article ID 142756, 11 pages
http://dx.doi.org/10.1155/2012/142756
Research Article

A Computer Model for the Simulation of Nonspherical Particle Dynamics in the Human Respiratory Tract

Brunnleitenweg 41, A-5061 Elsbethen, Salzburg, Austria

Received 29 April 2011; Accepted 21 October 2011

Academic Editor: Anil Chourasia

Copyright © 2012 Robert Sturm. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Su and Y. S. Cheng, “Deposition of fiber in a human airway replica,” Journal of Aerosol Science, vol. 37, no. 11, pp. 1429–1441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Lippmann, “Effects of fiber characteristics on lung deposition, retention, and disease,” Environmental Health Perspectives, vol. 88, pp. 311–317, 1990. View at Google Scholar · View at Scopus
  3. T. Myojo, “Deposition of fibrous aerosol in model bifurcating tubes,” Journal of Aerosol Science, vol. 18, no. 3, pp. 337–347, 1987. View at Google Scholar · View at Scopus
  4. Y. K. Chen and C. P. Yu, “Sedimentation of fibers from laminar flows in a horizontal circular duct,” Aerosol Science and Technology, vol. 14, no. 3, pp. 343–347, 1991. View at Google Scholar · View at Scopus
  5. F. S. Cai and C. P. Yu, “Inertial and interceptional deposition of spherical particles and fibers in a bifurcating airway,” Journal of Aerosol Science, vol. 19, no. 6, pp. 679–688, 1988. View at Google Scholar · View at Scopus
  6. T. W. Hesterberg and G. A. Hart, “Synthetic vitreous fibers: a review of toxicology research and its impact on hazard classification,” Critical Reviews in Toxicology, vol. 31, no. 1, pp. 1–53, 2001. View at Google Scholar · View at Scopus
  7. O. Kamstrup, A. Ellehauge, C. G. Collier, and J. M. G. Davis, “Carcinogenicity studies after intraperitoneal injection of two types of stone wool fibres in rats,” Annals of Occupational Hygiene, vol. 46, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol 81: Man-Made Vitreous Fibers, IARC Press, Lyon, France, 2002.
  9. J. G. Slowik, K. Stainken, P. Davidovits et al., “Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: application to combustion-generated soot aerosols as a function of fuel equivalence ratio,” Aerosol Science and Technology, vol. 38, no. 12, pp. 1206–1222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. F. DeCarlo, J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez, “Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory,” Aerosol Science and Technology, vol. 38, no. 12, pp. 1185–1205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Virtanen, J. Ristimäki, and J. Keskinen, “Method for measuring effective density and fractal dimension of aerosol agglomerates,” Aerosol Science and Technology, vol. 38, no. 5, pp. 437–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Stöber, “Dynamic shape factors of nonspherical aerosol particles,” in Assessment of Airborne Particles, T. Mercer, Ed., pp. 247–289, Charles C. Thomas Publisher, Springfield, Ill, USA, 1972. View at Google Scholar
  13. Y. T. Dai and C. P. Yu, “Alveolar deposition of fibers in rodents and humans,” Journal of Aerosol Medicine, vol. 11, no. 4, pp. 247–258, 1998. View at Google Scholar · View at Scopus
  14. Z. L. Arsenijevic, Z. B. Grbavcic, R. V. Garic-Grulovic, and F. K. Zdanski, “Determination of non-spherical particle terminal velocity using particulate expansion data,” Powder Technology, vol. 103, no. 3, pp. 265–273, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Sturm and W. Hofmann, “A computer program for the simulation of fiber deposition in the human respiratory tract,” Computers in Biology and Medicine, vol. 36, no. 11, pp. 1252–1267, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. B. Asgharian and S. Anijilvel, “Movement and deposition of fibers in an airway with steady viscous flow,” Aerosol Science and Technology, vol. 22, no. 3, pp. 261–270, 1995. View at Google Scholar · View at Scopus
  17. M. Shams, G. Ahmadi, and H. Rahimzadeh, “Transport and deposition of flexible fibers in turbulent duct flows,” Journal of Aerosol Science, vol. 32, no. 4, pp. 525–547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Koblinger and W. Hofmann, “Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure,” Journal of Aerosol Science, vol. 21, no. 5, pp. 661–674, 1990. View at Google Scholar · View at Scopus
  19. G. Kasper, “Dynamics and measurement of smokes. I. Size characterization of nonspherical particles,” Aerosol Science and Technology, vol. 1, no. C, pp. 187–199, 1982. View at Google Scholar
  20. L. Koblinger, “Analysis of human lung morphometric data for stochastic aerosol deposition calculations,” Physics in Medicine and Biology, vol. 30, no. 6, article 004, pp. 541–556, 1985. View at Publisher · View at Google Scholar
  21. B. Haefeli-Bleuer and E. R. Weibel, “Morphometry of the human pulmonary acinus,” Anatomical Record, vol. 220, no. 4, pp. 401–414, 1988. View at Google Scholar
  22. H. C. Yeh and G. M. Schum, “Models of human lung airways and their application to inhaled particle deposition,” Bulletin of Mathematical Biology, vol. 42, no. 3, pp. 461–480, 1980. View at Google Scholar
  23. International Commission on Radiological Protection (ICRP), Human Respiratory Tract Model for Radiological Protection, Publication 66, Pergamon Press, Oxford, UK, 1994.
  24. C. N. Davies, “Particle-fluid interaction,” Journal of Aerosol Science, vol. 10, no. 5, pp. 477–513, 1979. View at Google Scholar · View at Scopus
  25. I. Balásházy, T. B. Martonen, and W. Hofmann, “Fiber deposition in airway bifurcations,” Journal of Aerosol Medicine, vol. 3, pp. 243–260, 1990. View at Google Scholar
  26. R. Sturm and W. Hofmann, “A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract,” Journal of Hazardous Materials, vol. 170, no. 1, pp. 210–218, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Hölzer and M. Sommerfeld, “Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles,” Computers and Fluids, vol. 38, no. 3, pp. 572–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Sommerfeld, “Particle dispersion in turbulent flow. The effect of particle size distribution,” Particle & Particle Systems Characterization, vol. 7, no. 4, pp. 209–220, 1990. View at Google Scholar