Table of Contents
Physics Research International
Volume 2012, Article ID 276348, 22 pages
http://dx.doi.org/10.1155/2012/276348
Review Article

Magnetic and Magnetoelectric Properties of Rare Earth Molybdates

1Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
2IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
3Departamento de Fisica de Materiales, Facultad de Quimicas, UPV/EHU, 20009 San Sebastian, Spain

Received 27 July 2011; Accepted 14 February 2012

Academic Editor: Mitsuteru Inoue

Copyright © 2012 B. K. Ponomarev and A. Zhukov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. H. Brixner, J. R. Barkley, and W. Jeitschko, “Rare-earth molibdates (VI),” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr. and L. Eyring, Eds., vol. chapter 30, pp. 610–655, North-Holland Publishing Company, 1979. View at Google Scholar
  2. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Ferroelectric ferroelastic paramagnetic beta-Gd2(MoO4)3 crystal structure of the transition-metal molybdates and tungstates. VI,” The Journal of Chemical Physics, vol. 54, no. 7, pp. 3195–3206, 1971. View at Google Scholar
  3. K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals,” Applied Physics Letters, vol. 69, no. 13, pp. 1966–1968, 1996. View at Google Scholar · View at Scopus
  4. D. C. Dunand and P. Müllner, “Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys,” Advanced Materials, vol. 23, no. 2, pp. 216–232, 2011. View at Publisher · View at Google Scholar
  5. Boris K. Ponomarev, Sergey A. Ivanov, Valery D. Negrii et al., “Giant magnetic anisotropy in paramagnetic Tb2(MoO4)3,” Ferroelectrics, vol. 151, no. 1–4, pp. 103–108, 1994. View at Google Scholar
  6. A. P. Levanyuk and D. G. Sannikov, “On closed by the temperature phase transitions of the second type,” JETP Letters, vol. 55, pp. 256–265, 1968. View at Google Scholar
  7. J. Petzelt and V. Dvořak, “New type of ferroelectric soft mode in gadolinium molybdate,” Physica Status Solidi (b), vol. 46, pp. 413–423, 1971. View at Google Scholar
  8. J. D. Axe, B. Dorner, and G. Shirane, “Mechanism of the ferroelectric phase transformation in rare-earth molybdates,” Physical Review Letters, vol. 26, no. 9, pp. 519–523, 1971. View at Publisher · View at Google Scholar
  9. B. Dorner, J. D. Axe, and G. Shirane, “Neutron-scattering study of the ferroelectric phase transformation in Tb2(MoO4)3,” Physical Review B, vol. 6, no. 5, pp. 1950–1963, 1972. View at Publisher · View at Google Scholar
  10. W. Jeitschko, “The crystal structure of ferroelectric gadolinium molybdate, Gd2(MoO4)3,” Die Naturwissenschaften, vol. 57, no. 11, p. 544, 1970. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Jeitschko, “A comprehensive X-ray study of the ferroelectric-ferroelastic and paraelectric-paraelastic phases of Gd2(MoO4)3,” Acta Crystallographica B, vol. 28, pp. 60–76, 1972. View at Google Scholar
  12. K. Aizu, “Possible species of "Ferroelastic" crystals and of simultaneously ferroelectric and ferroelastic Crystals,” Journal of the Physical Society of Japan, vol. 27, no. 2, pp. 387–396, 1969. View at Google Scholar
  13. E. Sawaguchi and L. E. Cross, “Spontaneous polarization of Gd2(MoO4)3,” Journal of Applied Physics, vol. 44, no. 6, pp. 2541–2544, 1973. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Borhardt and P. E. Bierstedt, “Ferroelectric rare-earth molybdates,” Journal of Applied Physics, vol. 38, no. 5, pp. 2057–2061, 1967. View at Google Scholar
  15. L. E. Cross, A. Fouskova, and S. E. Cummins, “Gadolinium molybdate, a new type of ferroelectric crystal,” Physical Review Letters, vol. 21, no. 12, pp. 812–814, 1968. View at Publisher · View at Google Scholar · View at Scopus
  16. F. G. Ullman, B. N. Ganguly, and J. R. Zeidler, “Pyroelectric detection properties of gadolinium molybdate (gmo),” Journal of Electronic Materials, vol. 1, no. 3, pp. 425–434, 1972. View at Publisher · View at Google Scholar · View at Scopus
  17. F. G. Ullman, K. M. Cheung, G. A. Rakes, and B. N. Ganguly, “Re-examination of the pyroelectric current anomaly in gadolinium molybdatet,” Ferroelectrics, vol. 9, pp. 63–64, 1975. View at Google Scholar
  18. R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque, “Magnetothermodynamics of antiferromagnetic, ferroelectric β-Gd2(M.oO4)3. I. Heat capacity, entropy, magnetic moment of the electrically polarized form from 0.4 to 4.2°K with Fields to 90 kG along the c crystal axis,” The Journal of Chemical Physics, vol. 56, no. 1, pp. 193–212, 1972. View at Google Scholar
  19. E. W. Hornung, G. E. Brodale, R. A. Fisher, and W. F. Giauque, “Magnetothermodynamics of antiferromagnetic, ferroelectric β-Gd2(MoO4)3. II. Heat capacity, entropy, magnetic moment of the electrically polarized form from 0.4 to 4.2°K with fields to 90 kG along the a crystal axis,” The Journal of Chemical Physics, vol. 56, no. 10, pp. 5007–5018, 1972. View at Google Scholar
  20. G. E. Brodale, R. A. Fisher, E. W. Hornung, and W. F. Giauque, “Magnetothermodynamics of antiferromagnetic, ferroelectric β-Gd2(MoO4)3. III. Heat capacity, entropy, magnetic moment of the electrically polarized form from 0.4 to 4.2°K with fields to 90 kG along the b crystal axis,” The Journal of Chemical Physics, vol. 56, no. 12, pp. 6118–6125, 1972. View at Google Scholar
  21. R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Glauque, “Magnetothermodynamics of antiferromagnetic, ferroelectric, ferroelastic β-Gd2(MoO4)3, IV Thermodynamic temperature and other properties without heat introduction below 0.5°K. Fields to 10 kG along the c+ crystal axis,” The Journal of Chemical Physics, vol. 59, no. 11, pp. 5796–5809, 1973. View at Google Scholar
  22. R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque, “Magnetothermodynamics of antiferromagnetic, polarized ferroelectric, ferroelastic β-Gd2(MoO4)3. V. Thermodynamic temperature and other properties with heat introduction below 0.5°K. Fields to 5 kG along the b crystal axis,” The Journal of Chemical Physics, vol. 69, no. 6, pp. 2892–2900, 1978. View at Google Scholar
  23. R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. F. Giauque, “Magnetothermodynamics of ferroelectric, ferroelastic, antiferromagnetic β-terbium molybdate. I. Heat capacity, entropy, magnetic moment of the electrically polarized form from 0.4 to 4.2 °K with fields to 90 kG along the c crystal axis,” The Journal of Chemical Physics, vol. 63, no. 3, pp. 1295–1308, 1975. View at Google Scholar
  24. B. K. Ponomarev, Yu. F. Popov, and D. S. Red'kin, “Magnetostriction of paramagnetic terbium molybdate in fields up to 150 kOe,” JETP Letters, vol. 57, pp. 483–486, 1993. View at Google Scholar
  25. B. K. Ponomarev, S. A. Ivanov, B. S. Red'Kin, and V. N. Kurlov, “Irreversible alterations of ferroelectric domain structure in paramagnetic rare earth molybdates induced by a magnetic field,” Journal of Applied Physics, vol. 75, no. 12, pp. 8004–8007, 1994. View at Publisher · View at Google Scholar
  26. B. K. Ponomarev, A. I. Popov, J. Van Tol et al., “Magnetism of singlets in terbium molybdate,” Journal of Magnetism and Magnetic Materials, vol. 258-259, pp. 510–512, 2003. View at Publisher · View at Google Scholar
  27. L. D. Landau and E. M. Lifshits, Kvantovaya Mekhanika, Nauka, Moscow, Russia, 1974.
  28. J. Samuel Smart, Effective Field Theories of Magnetism, IBM Watson Research Center, New York, NY, USA, 1966.
  29. H. A. Jahn and E. Teller, “Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy,” Proceedings of the Royal Society A, vol. 161, pp. 220–235, 1937. View at Google Scholar
  30. H. A. Kramers, “Theorie generale de la rotation paramagnetique dans les cristaux,” Proceedings Academy of Science, Amsterdam, vol. 33, pp. 959–972, 1930. View at Google Scholar
  31. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Redkozemel'nye Iony v Magnito-Uporyadochennykh Kistallakh, Nauka, Moscow, Russia, 1985.
  32. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuum, Gostekhizdat, Moscow, Russia, 1957.
  33. I. E. Dzyaloshinskii, “Topological model of a heisenberg spin glass,” JETP Letters, vol. 37, pp. 881–882, 1959. View at Google Scholar
  34. D. N. Astrov, “The magnetoelectric effect in antiferromagnetics,” JETP Letters, vol. 38, pp. 984–985, 1960. View at Google Scholar
  35. D. N. Astrov, “Magnetoelectric effect in chromium oxide,” JETP Letters, vol. 40, pp. 1035–1041, 1961. View at Google Scholar
  36. S. L. Hou and N. Bloembergen, “Paramagnetoelectric effects in NiSO4 6H2O,” Physical Review, vol. 138, no. 4A, pp. A1218–A1226, 1965. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Ivanov, V. N. Kurlov, B. K. Ponomarev, and B. S. Red'kin, “Magnetoelectric effect in terbium molibdate,” JETP Letters, vol. 52, no. 7, pp. 1003–1005, 1990. View at Google Scholar
  38. B. K. Ponomarev, S. A. Ivanov, B. S. Red'kin, and V. N. Kurlov, “Magnetoelectrical effect in paramagnetic rare-earth molybdates,” Physica B, vol. 177, no. 1–4, pp. 327–329, 1992. View at Google Scholar · View at Scopus
  39. I. E. Chupis, “Effect of magnetic field on ferroelectric properties of rare-earthe molobdates,” Fizika Nizkikh Temperatur, vol. 21, no. 9, pp. 941–4695, 1995. View at Google Scholar
  40. B. K. Ponomarev, S. A. Ivanov, B. S. Red'kin, and V. N. Kurlov, “Effect of a magnetic field on the ferroelectric domain structure of TbGd(MoO4)3,” JETP Letters, vol. 55, pp. 353–361, 1992. View at Google Scholar
  41. B. K. Ponomarev, V. D. Negrii, B. S. Red'kin, and Yu F. Popov, “Magneto-electro-elastic effects in some rare earth molybdates and related properties,” Journal of Physics D: Applied Physics, vol. 27, no. 10, pp. 1995–2001, 1994. View at Publisher · View at Google Scholar
  42. H. Wiegelmann, B. K. Ponomarev, J. van Tol, A. G. M. Jansen, P. Wyder, and B. S. Red'kin, “Magnetoelectric properties of ferroelectric rare earth molybdates,” Ferroelectrics, vol. 183, pp. 195–204, 1996. View at Google Scholar
  43. B. K. Ponomarev, A. I. Popov, E. Steep et al., Fizika Tverdogo Tela, vol. 47, no. 7, p. 1326, 2005.
  44. N. F. Vedernikov, A. K Zvezdin, R. Z. Levitin, and A. I. Popov, “Magnetic linear birefringence of rare-earth garnets,” JETP Letters, vol. 93, p. 2161, 1987, Soviet Physics—JETP, vol. 66, no. 6, p. 1233, 1987. View at Google Scholar
  45. N. S. Akulov, Ferromagnetics, Gostekhizdat, Moscow, Russia, 1939.
  46. E. Callen and H. B. Callen, “Magnetostriction, forced magnetostriction, and anomalous thermal expansion in ferromagnets,” Physical Review, vol. 139, no. 2A, pp. A455–A471, 1965. View at Publisher · View at Google Scholar
  47. B. K. Ponomarev, B. S. Red'kin, H. Wiegelmann, A. G. M. Jansen, P. Wyder, and J. van Tol., “Magnetoelectric effect in orthorhombic Gd2(MoO4)3,” Ferroelectric letters, vol. 18, no. 3-4, pp. 133–140, 1994. View at Google Scholar
  48. B. K. Ponomarev, E. Steep, H. Wiegelmann, A. G. M. Jansen, P. Wyder, and B .S. Red'kin, “Anisotropy of the magnetoelectric effect in β-Gd2(MoO4)3,” Physics of the Solid State, vol. 42, no. 4, pp. 716–738, 2000. View at Google Scholar
  49. H. B. Callen and E. Callen, “The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1) 2 power law,” Journal of Physics and Chemistry of Solids, vol. 27, no. 8, pp. 1271–1285, 1966. View at Google Scholar · View at Scopus
  50. B. K. Ponomarev, B. S. Red'kin, E. Steep, H. Wiegelmann, A. G. M. Jansen, and P. Wyder, “Magnetoelectric effect in samarium molybdate,” Physics of the Solid State, vol. 44, no. 1, pp. 145–148, 2002. View at Google Scholar
  51. K. P. Belov, M. A. Belyanchokova, R. Z. Levitin, and S. A. Nikitin, Rare-Earth Ferromagnets and Antiferromagnets, Nauka, Moscow, Russia, 1965.
  52. B. K. Ponomarev, J. Zeman, G. Martinez et al., “The anisotropy of the intensity of the optical absorption in β′—Tb2(MoO4)3,” Ferroelectrics, vol. 204, pp. 279–288, 1997. View at Google Scholar · View at Scopus
  53. B. K. Ponomarev, A. I. Popov, B. S. Red'kin et al., “The longitudinal zeeman effect in terbium molybdate,” Journal of Magnetism and Magnetic Materials, vol. 300, no. 1, pp. e422–e425, 2006. View at Google Scholar
  54. B. K. Ponomarev, I. A. Kornev, V. D. Negrii, G. M. Vizdrik, and B. S. Red'kin, “Anomalously high photovoltages in terbium molybdate,” Physics of the Solid State, vol. 40, pp. 661–663, 1998. View at Google Scholar
  55. B. K. Ponomarev, V. D. Negrii, and B. S. Red'Kin, “Two types of photo-induced voltages in terbium molybdate,” Ferroelectrics, vol. 280, pp. 119–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. A. A. Grekov, M. A. Malitskaia, V. D. Spitsina, and B. M. Fridkin, “Photoelectric effects in A5B6C7-type ferroelectrics-semiconductors with low-temperature phase transitions,” Kristallografiya, vol. 15, pp. 500–509, 1970. View at Google Scholar
  57. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Applied Physics Letters, vol. 25, no. 4, pp. 233–235, 1974. View at Publisher · View at Google Scholar · View at Scopus
  58. V. M. Fridkin, Fotosegnetoelektriki, Nauka, Moscow, Russia, 1979.
  59. A. G. Chynoweth, “Surface space-charge layers in barium titanate,” Physical Review, vol. 102, no. 3, pp. 705–714, 1956. View at Publisher · View at Google Scholar · View at Scopus
  60. P. V. Ionov, “Photosensitivity of ferroelectric niobates,” Fizika Tverdogo Tela, vol. 15, no. 9, pp. 2827–2878, 1973. View at Google Scholar
  61. P. V. Ionov, V. V. Voronov, and V. T. Gabrielyan, “Detection of photoinduced change of refraction in ferroelectric lead germanate,” Fizika Tverdogo Tela, vol. 17, no. 4, pp. 1144–1146, 1975. View at Google Scholar
  62. V. M. Fridkin, B. N. Popov, and K. A. Verkhovskaya, “Photo-voltaic and photorefractive effects in ferroelectrics of kdp-group,” Fizika Tverdogo Tela, vol. 20, no. 4, pp. 1263–1265, 1978. View at Google Scholar
  63. B. K. Ponomarev and B. S. Red'kin, “Fluctuations of the piezo-acoustic impedance in gadolinium molybdate near the curie temeprature,” Fiz. Tverd. Tela, vol. 49, pp. 1260–1264, 2007. View at Google Scholar
  64. “IRE standards on piezoelectric crystals,” Proceedings of the IR, vol. 49, no. 7, pp. 1161–1169, 1961.
  65. K. S. van Dyke, “The piezo-electric resonator and its equivalent network,” Proceedings of the IRE, no. 16, pp. 742–764, 1928. View at Google Scholar
  66. L. Bergmann, Der Ultraschall und seine Anwendung in Wissenschaft und Technik, Zürich, Switzerland, 1954.
  67. I. A. Yakovlev and T. S. Velichkina, “Two new phenomena at phase transitions of second type,” Uspekhi Fizicheskikh Nauk, vol. 63, no. 10, pp. 411–433, 1957. View at Google Scholar