Table of Contents
Physics Research International
Volume 2012 (2012), Article ID 321075, 10 pages
Research Article

Modeling of Optical Nanoantennas

1Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 35514, Egypt
2Electronics and Communications Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

Received 11 May 2012; Accepted 3 October 2012

Academic Editor: Sergi Gallego

Copyright © 2012 Bedir B. Yousif and Ahmed S. Samra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The optical properties of plasmonic nanoantennas are investigated in detail using the finite integration technique (FIT). The validity of this technique is verified by comparison to the exact solution generalized Mie method (GMM). The influence of the geometrical parameters (antenna length, gap dimension, and shapes) on the antenna field enhancement and spectral response is discussed. Localized surface plasmon resonances of Au (gold) dimers nanospheres, bowtie, and aperture bowtie nanoantennas are modeled. The enhanced field is equivalent to a strong light spot which can lead to the resolution improvement of the microscopy and optical lithography, thus increasing the optical data storage capacity. Furthermore, the sensitivity of the antennas to index changes of the environment and substrate is investigated in detail for biosensing applications. We confirm that our approach yields an exact correspondence with GMM theory for Au dimers nanospheres at gap dimensions 5 nm and 10 nm but gives an approximation error of less than 1.37% for gap dimensions 1 nm and 2 nm with diameters approaching 80 nm. In addition, the far-field characteristics of the aperture bowtie nanoantenna such as directivity and gain are studied. The promising results of this study may have useful potential applications in near-field sample detection, optical microscopy, and so forth.