Table of Contents
Physics Research International
Volume 2012 (2012), Article ID 798906, 5 pages
http://dx.doi.org/10.1155/2012/798906
Research Article

Coaxial Self-Trapping of White and Gray Regions of an Incandescent Field: A Bright Core with a Dark Cladding

Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1

Received 14 May 2012; Accepted 23 July 2012

Academic Editor: Michael R. Gleeson

Copyright © 2012 Kailash Kasala and Kalaichelvi Saravanamuttu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Saravanamuttu, X. M. Du, S. I. Najafi, and M. P. Andrews, “Photoinducd structural relaxation and densification in sol-gel-derived nanocomposite thin films: implications for integrated optics device fabrication,” Canadian Journal of Chemistry, vol. 76, no. 11, pp. 1717–1729, 1998. View at Google Scholar · View at Scopus
  2. J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” Journal of the American Chemical Society, vol. 128, no. 46, pp. 14913–14923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Self-trapping of dark incoherent light beams,” Science, vol. 280, no. 5365, pp. 889–891, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mitchell, Z. Chen, M.-F. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Physical Review Letters, vol. 77, no. 3, pp. 490–493, 1996. View at Publisher · View at Google Scholar
  5. M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature, vol. 387, no. 6636, pp. 880–883, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Buljan, A. Šiber, M. Soljačić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Physical Review E, vol. 66, no. 3, Article ID 035601, 4 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Physical Review E, vol. 68, no. 3, part 2, Article ID 036607, 2003. View at Google Scholar · View at Scopus
  8. H. Buljan, M. Segev, M. Soljačić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Optics Letters, vol. 28, no. 14, pp. 1239–1241, 2003. View at Google Scholar · View at Scopus
  9. T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Physical Review Letters, vol. 93, no. 22, Article ID 223901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Optics Letters, vol. 21, no. 1, pp. 24–26, 1996. View at Publisher · View at Google Scholar
  11. K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Applied Physics Letters, vol. 93, no. 5, Article ID 051111, 3 pages, 2008. View at Publisher · View at Google Scholar
  12. I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” Journal of the American Chemical Society, vol. 129, no. 15, pp. 4738–4746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” Journal of Materials Chemistry, vol. 18, no. 35, pp. 4133–4139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, University of Rochester, New York, NY, USA, 7th edition, 1999.