Table of Contents Author Guidelines Submit a Manuscript
Physics Research International
Volume 2014 (2014), Article ID 187432, 5 pages
Research Article

Vector Potential Quantization and the Quantum Vacuum

National Institute for Nuclear Science and Technology, Centre d’Etudes de Saclay (CEA), 91191 Gif-sur-Yvette, France

Received 17 January 2014; Revised 4 June 2014; Accepted 4 June 2014; Published 19 June 2014

Academic Editor: Ali Hussain Reshak

Copyright © 2014 Constantin Meis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigate the quantization of the vector potential amplitude of the electromagnetic field to a single photon state starting from the fundamental link equations between the classical electromagnetic theory and the quantum mechanical expressions. The resulting wave-particle formalism ensures a coherent transition between the classical electromagnetic wave theory and the quantum representation. A quantization constant of the photon vector potential is defined. A new quantum vacuum description results directly in having very low energy density. The calculated spontaneous emission rate and Lambs shift for the states of the hydrogen atom are in agreement with quantum electrodynamics. This low energy quantum vacuum state might be compatible with recent astrophysical observations.