Table of Contents
Physics Research International
Volume 2014 (2014), Article ID 890713, 7 pages
http://dx.doi.org/10.1155/2014/890713
Research Article

Work Criteria Function of Irreversible Heat Engines

Academic Institute for Arab Teacher Training, Beit-Berl College, 44905 Doar Beit-Berl, Israel

Received 19 May 2014; Accepted 17 July 2014; Published 5 August 2014

Academic Editor: Ashok Chatterjee

Copyright © 2014 Mahmoud Huleihil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. L. Curzon and B. Ahlborn, “Efficiency of a carnot engine at maximum power output,” American Journal of Physics, vol. 43, pp. 22–24, 1975. View at Google Scholar
  2. I. I. Novikov, “The efficiency of atomic power stations,” Atommaya Energiya, vol. 3, p. 409, 1957, English translation in Journal of Nuclear Energy, vol. 7, p. 125 , 1958. View at Google Scholar
  3. B. Andresen, “Current trends in finite-time thermodynamics,” Angewandte Chemie-International Edition, vol. 50, no. 12, pp. 2690–2704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Chen, C. Wu, and F. Sun, “Finite time thermodynamic optimization or entropy generation minimization of energy systems,” Journal of Non-Equilibrium Thermodynamics, vol. 24, no. 4, pp. 327–359, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. C. Wu, L. Chen, and J. Chen, Eds., Recent Advances in Finite Time Thermodynamics, Nova Science Publishers, New York, NY, USA, 1999.
  6. L. Chen and S. Fengrui, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science, New York, NY, USA, 2004.
  7. L. Chen, F. Sun, and C. Wu, “A generalised model of a real heat engine and its performance,” Journal of the Institute of Energy, vol. 69, no. 481, pp. 214–222, 1996. View at Google Scholar · View at Scopus
  8. L. Chen, F. Sun, and C. Wu, “Influence of internal heat leak on the power versus efficiency characteristics of heat engines,” Energy Conversion and Management, vol. 38, no. 14, pp. 1501–1507, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Chen, S. Zhou, F. Sun, and C. Wu, “Optimal configuration and performance of heat engines with heat leak and finite heat capacity,” Open Systems and Information Dynamics, vol. 9, no. 1, pp. 85–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Chen, J. Li, and F. Sun, “Generalized irreversible heat-engine experiencing a complex heat-transfer law,” Applied Energy, vol. 85, no. 1, pp. 52–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Chen, W. Zhang, and F. Sun, “Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles,” Applied Energy, vol. 84, no. 5, pp. 512–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. G. Chen, H. J. Feng, and F. R. Sun, “Optimal piston speed ratio analyses for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and direct method,” Journal of the Energy Institute, vol. 84, no. 2, pp. 105–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Chen, K. Ma, and F. Sun, “Optimal expansion of a heated working fluid for maximum work output with time-dependent heat conductance and generalized radiative heat transfer law,” Journal of Non-Equilibrium Thermodynamics, vol. 36, no. 2, pp. 99–122, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. L. Chen, K. Ma, and F. Sun, “Optimal paths for a light-driven engine with [A]=[B] reacting system and generalized radiative heat transfer law,” International Journal of Chemical Reactor Engineering A, vol. 10, no. 1, article 68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Wu, L. Chen, and F. Sun, “Effect of the heat transfer law on the finite-time, exergoeconomic performance of heat engines,” Energy, vol. 21, no. 12, pp. 1127–1134, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Chen, F. Sun, and C. Wu, “Exergeoeconomic performance bound and optimisation criteria for heat engines,” International Journal of Ambient Energy, vol. 18, no. 4, pp. 216–218, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Li, L. Chen, and F. Sun, “Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law,” International Journal of Sustainable Energy, vol. 30, no. 1, pp. 55–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Ding, L. Chen, and F. Sun, “A unified description of finite time exergoeconomic performance for seven typical irreversible heat-engine cycles,” International Journal of Sustainable Energy, vol. 30, no. 5, pp. 257–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Chen, H. Feng, and F. Sun, “Exergoeconomic performance optimization for a combined cooling, heating and power generation plant with an endoreversible closed Brayton cycle,” Mathematical and Computer Modelling, vol. 54, no. 11-12, pp. 2785–2801, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Tao, L. Chen, and F. Sun, “Exergoeconomic performance optimization for an endoreversible regenerative gas turbine closed-cycle cogeneration plant,” Revista Mexicana de Fisica, vol. 55, no. 3, pp. 192–200, 2009. View at Google Scholar · View at Scopus
  21. J. Li, L. Chen, and F. Sun, “Exergoeconomic performance of an endoreversible Carnot heat pump with complex heat transfer law,” International Journal of Sustainable Energy, vol. 30, no. 1, pp. 26–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Feng, L. Chen, and F. Sun, “Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant,” Applied Mathematical Modelling, vol. 35, no. 9, pp. 4661–4673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Ding, L. Chen, and F. Sun, “Finite time exergoeconomic performance for six endoreversible heat engine cycles: unified description,” Applied Mathematical Modelling, vol. 35, no. 2, pp. 728–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Gordon, “Maximum power point characteristics of heat engines as a general thermodynamic problem,” American Journal of Physics, vol. 57, p. 1136, 1989. View at Google Scholar
  25. T. Zhan-Chun, “Recent advance on the efficiency at maximumpower of heat engines,” Chinese Physics B, vol. 21, no. 2, Article ID 020513, 2012. View at Google Scholar
  26. S. Ozkaynak, S. Goktun, and H. Yavuz, “Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility,” Journal of Physics D: Applied Physics, vol. 27, no. 6, pp. 1139–1143, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Cheng and C. Chen, “The ecological optimization of an irreversible Carnot heat engine,” Journal of Physics D: Applied Physics, vol. 30, no. 11, pp. 1602–1609, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Chen, C. Wub, and F. Sun, “Effect of heat transfer law on the finite-time exergoeconomic performance of a Carnot refrigerator,” Exergy, vol. 1, no. 4, pp. 295–302, 2001. View at Google Scholar
  29. M. A. Barranco-Jimenez, N. Sanchez-Salas, and F. Angulo-Brown, “Finite-time thermoeconomic optimization of a solar-driven heat engine model,” Entropy, vol. 13, pp. 171–183, 2011. View at Google Scholar
  30. M. Kang, C. Lingen, and F. Sun, “Optimizations of a model externalcombustion engine for maximum work output with generalized radiative heattransfer law,” International Journal of Energy and Environment, vol. 2, no. 4, pp. 723–738, 2011. View at Google Scholar
  31. B. Sahin, A. Kodal, and H. Yavuz, “Efficiency of a Joule-Brayton engine at maximum power density,” Journal of Physics D: Applied Physics, vol. 28, p. 1309, 1995. View at Google Scholar
  32. G. Maheshwari, S. Chaudhary, and S. K. Somani, “Performance analysis of a generalized radiative heat engine based on new maximum efficient power approach,” International Journal of Low-Carbon Technologies, vol. 4, no. 1, pp. 9–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Aragón-González, A. Canales-Palma, A. León-Galicia, and J. R. Morales-Gómez, “Optimization of an irreversible Carnot engine in finite time and finite size,” Revista Mexicana Defi'sica, vol. 52, no. 4, pp. 309–314, 2006. View at Google Scholar
  34. T. Yilmaz and Y. Durmuşoǧlu, “Efficient power analysis for an irreversible Carnot heat engine,” International Journal of Energy Research, vol. 32, no. 7, pp. 623–628, 2008. View at Publisher · View at Google Scholar · View at Scopus