Table of Contents Author Guidelines Submit a Manuscript
Pathology Research International
Volume 2011, Article ID 178265, 6 pages
http://dx.doi.org/10.4061/2011/178265
Review Article

PAR Genes: Molecular Probes to Pathological Assessment in Breast Cancer Progression

1Departments of Oncology, Hadassah-University Hospital P.O. Box 12000, Jerusalem 91120, Israel
2Departments of Pathology, Hadassah-University Hospital P.O. Box 12000, Jerusalem 91120, Israel

Received 15 September 2010; Accepted 4 January 2011

Academic Editor: Beiyun Chen

Copyright © 2011 Beatrice Uziely et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Taking the issue of tumor categorization a step forward and establish molecular imprints to accompany histopathological assessment is a challenging task. This is important since often patients with similar clinical and pathological tumors may respond differently to a given treatment. Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR), is the first member of the mammalian PAR family consisting of four genes. PAR1 and PAR2 play a central role in breast cancer. The release of N-terminal peptides during activation and the exposure of a cryptic internal ligand in PARs, endow these receptors with the opportunity to serve as a “mirror-image” index reflecting the level of cell surface PAR1&2-in body fluids. It is possible to use the levels of PAR-released peptide in patients and accordingly determine the choice of treatment. We have both identified PAR1 C-tail as a scaffold site for the immobilization of signaling partners, and the critical minimal binding site. This binding region may be used for future therapeutic modalities in breast cancer, since abrogation of the binding inhibits PAR1 induced breast cancer. Altogether, both PAR1 and PAR2 may serve as molecular probes for breast cancer diagnosis and valuable targets for therapy.