Table of Contents Author Guidelines Submit a Manuscript
Pain Research and Treatment
Volume 2012, Article ID 964652, 10 pages
Review Article

Astroglial Integrins in the Development and Regulation of Neurovascular Units

1Department of Anesthesiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
2Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie, Tsu City, Japan

Received 8 May 2012; Accepted 13 November 2012

Academic Editor: Kazuhide Inoue

Copyright © 2012 Hironobu Tanigami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the neurovascular units of the central nervous system, astrocytes form extensive networks that physically and functionally connect the neuronal synapses and the cerebral vascular vessels. This astrocytic network is thought to be critically important for coupling neuronal signaling activity and energy demand with cerebral vascular tone and blood flow. To establish and maintain this elaborate network, astrocytes must precisely calibrate their perisynaptic and perivascular processes in order to sense and regulate neuronal and vascular activities, respectively. Integrins, a prominent family of cell-adhesion molecules that support astrocytic migration in the brain during developmental and normal adult stages, have been implicated in regulating the integrity of the blood brain barrier and the tripartite synapse to facilitate the formation of a functionally integrated neurovascular unit. This paper describes the significant roles that integrins and connexins play not only in regulating astrocyte migration during the developmental and adult stages of the neurovascular unit, but also in general health and in such diseases as hepatic encephalopathy.