Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2010, Article ID 143540, 7 pages
http://dx.doi.org/10.1155/2010/143540
Clinical Study

FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas

1Ahmanson Biological Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA
2Division of Medical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA
3Department of Orthopedic Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA
4Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA
5Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA
6Abteilung Nuklearmedizin, University of Freiburg, 79106 Freiburg, Germany
7Division of Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1782, USA

Received 2 September 2009; Revised 18 December 2009; Accepted 8 February 2010

Academic Editor: Marcus Schlemmer

Copyright © 2010 Matthias R. Benz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Purpose. The aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods. Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results. Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders ( 6 4 ± 1 9 % versus 2 9 ± 3 0 %, resp.; 𝑃 = . 0 3 ). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion. These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients.