Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2012, Article ID 359739, 8 pages
http://dx.doi.org/10.1155/2012/359739
Review Article

MicroRNA Involvement in Osteosarcoma

1Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
2Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA 02114, USA

Received 2 December 2011; Revised 26 January 2012; Accepted 27 January 2012

Academic Editor: Alberto Pappo

Copyright © 2012 Eisuke Kobayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Geller and R. Gorlick, “Osteosarcoma: a review of diagnosis, management, and treatment strategies,” Clinical Advances in Hematology and Oncology, vol. 8, no. 10, pp. 705–718, 2010. View at Google Scholar · View at Scopus
  2. S. S. Bielack, B. Kempf-Bielack, G. Delling et al., “Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 776–790, 2002. View at Publisher · View at Google Scholar
  3. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Berezikov, V. Guryev, J. Van De Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human microRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Croce, “Causes and consequences of microRNA dysregulation in cancer,” Nature Reviews Genetics, vol. 10, no. 10, pp. 704–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Heneghan, N. Miller, and M. J. Kerin, “MiRNAs as biomarkers and therapeutic targets in cancer,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 543–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Nana-Sinkam and C. M. Croce, “MicroRNAs as therapeutic targets in cancer,” Translational Research, vol. 157, no. 4, pp. 216–225, 2011. View at Publisher · View at Google Scholar
  9. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Taulli, F. Bersani, V. Foglizzo et al., “The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2366–2378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Duan, E. Choy, G. Petur Nielsen et al., “Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in met expression,” Journal of Orthopaedic Research, vol. 28, no. 6, pp. 746–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Naka, Y. Iwamoto, N. Shinohara, M. Ushijima, H. Chuman, and M. Tsuneyoshi, “Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors,” Modern Pathology, vol. 10, no. 8, pp. 832–838, 1997. View at Google Scholar · View at Scopus
  13. E. Ostroumov and C. J. Hunter, “Identifying mechanisms for therapeutic intervention in chordoma: c-Met oncoprotein,” Spine, vol. 33, no. 25, pp. 2774–2780, 2008. View at Google Scholar · View at Scopus
  14. S. Subramanian, W. O. Lui, C. H. Lee et al., “MicroRNA expression signature of human sarcomas,” Oncogene, vol. 27, no. 14, pp. 2015–2026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Sarver, R. Phalak, V. Thayanithy, and S. Subramanian, “S-MED: sarcoma microRNA Expression Database,” Laboratory Investigation, vol. 90, no. 5, pp. 753–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kansara and D. M. Thomas, “Molecular pathogenesis of osteosarcoma,” DNA and Cell Biology, vol. 26, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Tang, W. X. Song, J. Luo, R. C. Haydon, and T. C. He, “Osteosarcoma development and stem cell differentiation,” Clinical Orthopaedics and Related Research, vol. 466, no. 9, pp. 2114–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. A. Siclari and L. Qin, “Targeting the osteosarcoma cancer stem cell,” Journal of Orthopaedic Surgery and Research, vol. 5, no. 1, article 78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Liu and D. G. Tang, “MicroRNA regulation of cancer stem cells,” Cancer Research, vol. 71, no. 18, pp. 5950–5954, 2011. View at Publisher · View at Google Scholar
  20. G. Maire, J. W. Martin, M. Yoshimoto, S. Chilton-MacNeill, M. Zielenska, and J. A. Squire, “Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma,” Cancer Genetics, vol. 204, no. 3, pp. 138–146, 2011. View at Publisher · View at Google Scholar
  21. R. R. Lulla, F. F. Costa, J. M. Bischof et al., “Identification of differentially expressed micrornas in osteosarcoma,” Sarcoma, vol. 2011, Article ID 732690, 6 pages, 2011. View at Publisher · View at Google Scholar
  22. A. M. Schaap-Oziemlak, R. A. Raymakers, S. M. Bergevoet et al., “MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells,” Stem Cells and Development, vol. 19, no. 6, pp. 877–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Stabley, D. Kamara, J. Holbrook et al., “Digital gene expression of mirna in osteosarcoma xenografts: finding biological relevance in mirna high throughput sequencing data,” Journal of Biomolecular Techniques, vol. 21, no. 3, supplement, article S25, 2010. View at Google Scholar
  24. N. Marina, M. Gebhardt, L. Teot, and R. Gorlick, “Biology and therapeutic advances for pediatric osteosarcoma,” Oncologist, vol. 9, no. 4, pp. 422–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. H. T. Ta, C. R. Dass, P. F. M. Choong, and D. E. Dunstan, “Osteosarcoma treatment: state of the art,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 247–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. I. Hauben, J. Arends, J. P. Vandenbroucke, C. J. van Asperen, E. Van Marck, and P. C. W. Hogendoorn, “Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma,” European Journal of Human Genetics, vol. 11, no. 8, pp. 611–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Hermeking, “p53 enters the MicroRNA world,” Cancer Cell, vol. 12, no. 5, pp. 414–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Hermeking, “The miR-34 family in cancer and apoptosis,” Cell Death and Differentiation, vol. 17, no. 2, pp. 193–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Lynam-Lennon, S. G. Maher, and J. V. Reynolds, “The roles of microRNA in cancer and apoptosis,” Biological Reviews, vol. 84, no. 1, pp. 55–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. He, J. Xiong, X. Xu et al., “Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples,” Biochemical and Biophysical Research Communications, vol. 388, no. 1, pp. 35–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Braun, X. Zhang, I. Savelyeva et al., “p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest,” Cancer Research, vol. 68, no. 24, pp. 10094–10104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Creighton, M. D. Fountain, Z. Yu et al., “Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers,” Cancer Research, vol. 70, no. 5, pp. 1906–1915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Valastyan, F. Reinhardt, N. Benaich et al., “A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis,” Cell, vol. 137, no. 6, pp. 1032–1046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. W. S. Ferguson and A. M. Goorin, “Current treatment of osteosarcoma,” Cancer Investigation, vol. 19, no. 3, pp. 292–315, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Kobayashi, M. Masuda, R. Nakayama et al., “Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma,” Molecular Cancer Therapeutics, vol. 9, no. 3, pp. 535–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S. T. Jacob, and T. Patel, “MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer,” Gastroenterology, vol. 133, no. 2, pp. 647–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. I. A. Asangani, S. A. K. Rasheed, D. A. Nikolova et al., “MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer,” Oncogene, vol. 27, no. 15, pp. 2128–2136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Zhu, M. L. Si, H. Wu, and Y. Y. Mo, “MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1),” Journal of Biological Chemistry, vol. 282, no. 19, pp. 14328–14336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Zhu, H. Wu, F. Wu, D. Nie, S. Sheng, and Y. Y. Mo, “MicroRNA-21 targets tumor suppressor genes in invasion and metastasis,” Cell Research, vol. 18, no. 3, pp. 350–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Ziyan, Y. Shuhua, W. Xiufang, and L. Xiaoyun, “MicroRNA-21 is involved in osteosarcoma cell invasion and migration,” Medical Oncology, vol. 28, no. 4, pp. 1469–1474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. G. Kang, H. S. Kim, K. J. Kim et al., “RECK expression in osteosarcoma: correlation with matrix metalloproteinases activation and tumor invasiveness,” Journal of Orthopaedic Research, vol. 25, no. 5, pp. 696–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Duan, E. Choy, D. Harmon et al., “MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration,” Molecular Cancer Therapeutics, vol. 10, no. 8, pp. 1337–1345, 2011. View at Publisher · View at Google Scholar
  44. F. Fornari, M. Milazzo, P. Chieco et al., “MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells,” Cancer Research, vol. 70, no. 12, pp. 5184–5193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Ichimi, H. Enokida, Y. Okuno et al., “Identification of novel microRNA targets based on microRNA signatures in bladder cancer,” International Journal of Cancer, vol. 125, no. 2, pp. 345–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Osaki, F. Takeshita, Y. Sugimoto et al., “MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression,” Molecular Therapy, vol. 19, no. 6, pp. 1123–1130, 2011. View at Publisher · View at Google Scholar
  47. H. Zhang, X. Cai, Y. Wang, H. Tang, D. Tong, and F. Ji, “microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2,” Oncology Reports, vol. 24, no. 5, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Z. Michael, S. M. O'Connor, N. G. Van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific microRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003. View at Google Scholar · View at Scopus
  49. K. P. Porkka, M. J. Pfeiffer, K. K. Waltering, R. L. Vessella, T. L. J. Tammela, and T. Visakorpi, “MicroRNA expression profiling in prostate cancer,” Cancer Research, vol. 67, no. 13, pp. 6130–6135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. V. Iorio, R. Visone, G. Di Leva et al., “MicroRNA signatures in human ovarian cancer,” Cancer Research, vol. 67, no. 18, pp. 8699–8707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. W. O. Lui, N. Pourmand, B. K. Patterson, and A. Fire, “Patterns of known and novel small RNAs in human cervical cancer,” Cancer Research, vol. 67, no. 13, pp. 6031–6043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Takagi, A. Iio, Y. Nakagawa, T. Naoe, N. Tanigawa, and Y. Akao, “Decreased expression of microRNA-143 and-145 in human gastric cancers,” Oncology, vol. 77, no. 1, pp. 12–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Chen, X. Guo, H. Zhang et al., “Role of miR-143 targeting KRAS in colorectal tumorigenesis,” Oncogene, vol. 28, no. 10, pp. 1385–1392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Akao, Y. Nakagawa, Y. Kitade, T. Kinoshita, and T. Naoe, “Downregulation of microRNAs-143 and -145 in B-cell malignancies,” Cancer Science, vol. 98, no. 12, pp. 1914–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Wachtel and B. W. Schäfer, “Targets for cancer therapy in childhood sarcomas,” Cancer Treatment Reviews, vol. 36, no. 4, pp. 318–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Song, Y. Wang, Y. Xi et al., “Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells,” Oncogene, vol. 28, no. 46, pp. 4065–4074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Song, Y. Wang, M. A. Titmus et al., “Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells,” Molecular Cancer, vol. 9, article 96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Boni, N. Bitarte, I. Cristobal et al., “miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2265–2275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Gougelet, D. Pissaloux, A. Besse et al., “Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response,” International Journal of Cancer, vol. 129, no. 3, pp. 680–690, 2011. View at Publisher · View at Google Scholar
  60. B. Vester and J. Wengel, “LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA,” Biochemistry, vol. 43, no. 42, pp. 13233–13241, 2004. View at Google Scholar · View at Scopus
  61. R. Garzon, G. Marcucci, and C. M. Croce, “Targeting microRNAs in cancer: rationale, strategies and challenges,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 775–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Ebert, J. R. Neilson, and P. A. Sharp, “MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells,” Nature Methods, vol. 4, no. 9, pp. 721–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Y. Choi, A. J. Giraldez, and A. F. Schier, “Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430,” Science, vol. 318, no. 5848, pp. 271–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. V. Pecot, G. A. Calin, R. L. Coleman, G. Lopez-Berestein, and A. K. Sood, “RNA interference in the clinic: challenges and future directions,” Nature Reviews Cancer, vol. 11, no. 1, pp. 59–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. K. F. Pirollo, L. Xu, and E. H. Chang, “Non-viral gene delivery for p53,” Current Opinion in Molecular Therapeutics, vol. 2, no. 2, pp. 168–175, 2000. View at Google Scholar · View at Scopus
  66. F. Stegmeier, G. Hu, R. J. Rickles, G. J. Hannon, and S. J. Elledge, “A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 37, pp. 13212–13217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Takeshita, Y. Minakuchi, S. Nagahara et al., “Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12177–12182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Susa, A. K. Iyer, K. Ryu et al., “Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma,” PLoS ONE, vol. 5, no. 5, Article ID e10764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus