Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2012, Article ID 523432, 12 pages
http://dx.doi.org/10.1155/2012/523432
Review Article

Molecular Alterations Associated with Osteosarcoma Development

1INSERM, UMR-S 957, 1 Rue Gaston Veil, 44035 Nantes, France
2Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, EA3822, 1 Rue Gaston Veil, 44035 Nantes, France
3Equipe Labellisée Ligue 2012, Nantes, France
4Department of Orthopaedic Surgery, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan
5Nantes University Hospital, Nantes, France

Received 30 September 2011; Accepted 2 December 2011

Academic Editor: Chandrajit Premanand Raut

Copyright © 2012 Kosei Ando et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Meyers and R. Gorlick, “Osteosarcoma,” Pediatric Clinics of North America, vol. 44, no. 4, pp. 973–989, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Rosen, B. Caparros, and A. G. Huvos, “Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy,” Cancer, vol. 49, no. 6, pp. 1221–1230, 1982. View at Google Scholar · View at Scopus
  3. G. Bacci, A. Longhi, M. Cesari, M. Versari, and F. Bertoni, “Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy: the experience of a single institution with 44 patients,” Cancer, vol. 106, no. 12, pp. 2701–2706, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. O. S. Bruland and A. Pihl, “On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy,” European Journal of Cancer, vol. 33, no. 11, pp. 1725–1731, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Longhi, C. Errani, M. De Paolis, M. Mercuri, and G. Bacci, “Primary bone osteosarcoma in the pediatric age: state of the art,” Cancer Treatment Reviews, vol. 32, no. 6, pp. 423–436, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. Heymann and F. Rédini, “Bone sarcomas: pathogenesis and new therapeutic approaches,” IBMS, vol. 8, no. 9, pp. 402–414, 2011. View at Google Scholar
  7. D. Heymann, Ed., Bone cancer: progression and therapeutic approaches, Academic Press, 2010.
  8. G. Bacci, S. Ferrari, A. Longhi et al., “Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy,” European Journal of Cancer, vol. 37, no. 1, pp. 32–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Dunn and L. P. Dehner, “Metastatic osteosarcoma to lung: a clinicopathologic study of surgical biopsies and resections,” Cancer, vol. 40, no. 6, pp. 3054–3064, 1977. View at Google Scholar · View at Scopus
  10. W. F. Enneking, S. S. Spanier, and M. A. Goodman, “A system for the surgical staging of musculoskeletal sarcoma,” Clinical Orthopaedics and Related Research, vol. 153, pp. 106–120, 1980. View at Google Scholar · View at Scopus
  11. J. Folkman, “The role of angiogenesis in tumor growth,” Seminars in Cancer Biology, vol. 3, no. 2, pp. 65–71, 1992. View at Google Scholar · View at Scopus
  12. W. D. Thompson, K. J. Shiach, and R. A. Fraser, “Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth,” Journal of Pathology, vol. 151, no. 4, pp. 323–332, 1987. View at Google Scholar · View at Scopus
  13. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Google Scholar · View at Scopus
  14. D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara, “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science, vol. 246, no. 4935, pp. 1306–1309, 1989. View at Google Scholar · View at Scopus
  15. S. A. Eccles and D. R. Welch, “Metastasis: recent discoveries and novel treatment strategies,” The Lancet, vol. 369, no. 9574, pp. 1742–1757, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. S. Steeg, “Tumor metastasis: mechanistic insights and clinical challenges,” Nature Medicine, vol. 12, no. 8, pp. 895–904, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. N. Kaplan, B. Psaila, and D. Lyden, “Bone marrow cells in the “pre-metastatic niche”: within bone and beyond,” Cancer and Metastasis Reviews, vol. 25, no. 4, pp. 521–529, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Danø, P. A. Andreasen, J. Grøndahl-Hansen, P. Kristensen, L. S. Nielsen, and L. Skriver, “Plasminogen activators, tissue degradation, and cancer,” Advances in Cancer Research, vol. 44, pp. 139–266, 1985. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Georges, C. Ruiz Velasco, V. Trichet, Y. Fortun, D. Heymann, and M. Padrines, “Proteases and bone remodelling,” Cytokine and Growth Factor Reviews, vol. 20, no. 1, pp. 29–41, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Bergers, R. Brekken, G. McMahon et al., “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nature Cell Biology, vol. 2, no. 10, pp. 737–744, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. R. V. Iozzo, J. J. Zoeller, and A. Nyström, “Basement membrane proteoglycans: modulators par excellence of cancer growth and angiogenesis,” Molecules and Cells, vol. 27, no. 5, pp. 503–513, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Y. H. Lee, T. Tokunaga, Y. Oshika et al., “Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma,” European Journal of Cancer, vol. 35, no. 7, pp. 1089–1093, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kaya, T. Wada, T. Akatsuka et al., “Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis,” Clinical Cancer Research, vol. 6, no. 2, pp. 572–577, 2000. View at Google Scholar · View at Scopus
  24. A. Franchi, L. Arganini, G. Baroni et al., “Expression of transforming growth factor β isoforms in osteosarcoma variants: association of TGFβ1 with high-grade osteosarcomas,” Journal of Pathology, vol. 185, no. 3, pp. 284–289, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Scotlandi, P. Picci, and H. Kovar, “Targeted therapies in bone sarcomas,” Current Cancer Drug Targets, vol. 9, no. 7, pp. 843–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Abdeen, A. J. Chou, J. H. Healey et al., “Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma,” Cancer, vol. 115, no. 22, pp. 5243–5250, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. E. Mantadakis, G. Kim, J. Reisch et al., “Lack of prognostic significance of intratumoral angiogenesis in nonmetastatic osteosarcoma,” Journal of Pediatric Hematology/Oncology, vol. 23, no. 5, pp. 286–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Mikulic, I. Ilić, M. Ćepulić et al., “Tumor angiogenesis and outcome in osteosarcoma,” Pediatric Hematology and Oncology, vol. 21, no. 7, pp. 611–619, 2004. View at Publisher · View at Google Scholar
  29. M. Kreuter, R. Bieker, S. S. Bielaek et al., “Prognostic relevance of increased angiogenesis in osteosarcoma,” Clinical Cancer Research, vol. 10, no. 24, pp. 8531–8537, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. S. O'Reilly, L. Holmgren, Y. Shing et al., “Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma,” Cell, vol. 79, no. 2, pp. 315–328, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. O'Reilly, T. Boehm, Y. Shing et al., “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth,” Cell, vol. 88, no. 2, pp. 277–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Dhanabal, R. Volk, R. Ramchandran, M. Simons, and V. P. Sukhatme, “Cloning, expression, and in vitro activity of human endostatin,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 345–352, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. Blezinger, J. Wang, M. Gondo et al., “Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene,” Nature Biotechnology, vol. 17, no. 4, pp. 343–348, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. S. Yoon, H. Eto, C. M. Lin et al., “Mouse endostatin inhibits the formation of lung and liver metastases,” Cancer Research, vol. 59, no. 24, pp. 6251–6256, 1999. View at Google Scholar · View at Scopus
  35. Y. Yokoyama, M. Dhanabal, A. W. Griffioen, V. P. Sukhatme, and S. Ramakrishnan, “Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth,” Cancer Research, vol. 60, no. 8, pp. 2190–2196, 2000. View at Google Scholar · View at Scopus
  36. O. Kisker, C. M. Becker, D. Prox et al., “Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model,” Cancer Research, vol. 61, no. 20, pp. 7669–7674, 2001. View at Google Scholar · View at Scopus
  37. W. Shi, C. Teschendorf, N. Muzyczka, and D. W. Siemann, “Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo,” Cancer Gene Therapy, vol. 9, no. 6, pp. 513–521, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. A. L. Feldman, H. R. Alexander, S. M. Hewitt et al., “Effect of retroviral endostatin gene transfer on subcutaneous and intraperitoneal growth of murine tumors,” Journal of the National Cancer Institute, vol. 93, no. 13, pp. 1014–1020, 2001. View at Google Scholar · View at Scopus
  39. C. Mundhenke, J. P. Thomas, G. Wilding et al., “Tissue examination to monitor antiangiogenic therapy: a phase I clinical trial with endostatin,” Clinical Cancer Research, vol. 7, no. 11, pp. 3366–3374, 2001. View at Google Scholar · View at Scopus
  40. J. P. Eder Jr., J. G. Supko, J. W. Clark et al., “Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily,” Journal of Clinical Oncology, vol. 20, no. 18, pp. 3772–3784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. S. Herbst, K. R. Hess, H. T. Tran et al., “Phase I study of recombinant human endostatin in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 20, no. 18, pp. 3792–3803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. P. Thomas, R. Z. Arzoomanian, D. Alberti et al., “Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 21, no. 2, pp. 223–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Deschaseaux, L. Sensébé, and D. Heymann, “Mechanisms of bone repair and regeneration,” Trends in Molecular Medicine, vol. 15, no. 9, pp. 417–429, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Bjornland, K. Flatmark, S. Pettersen, A. O. Aaasen, Ø. Fodstad, and G. M. Mælandsmo, “Matrix metalloproteinases participate in osteosarcoma invasion,” Journal of Surgical Research, vol. 127, no. 2, pp. 151–156, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. Kansara and D. M. Thomas, “Molecular pathogenesis of osteosarcoma,” DNA and Cell Biology, vol. 26, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. G. Fan, J. Y. Dai, J. Tang et al., “Silencing of calpain expression reduces the metastatic potential of human osteosarcoma cells,” Cell Biology International, vol. 33, no. 12, pp. 1263–1267, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. C. M. Díaz-Montero, J. N. Wygant, and B. W. McIntyre, “PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation,” European Journal of Cancer, vol. 42, no. 10, pp. 1491–1500, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. P. Hingorani, W. Zhang, R. Gorlick, and E. A. Kolb, “Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo,” Clinical Cancer Research, vol. 15, no. 10, pp. 3416–3422, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. L. C. Kim, L. Song, and E. B. Haura, “Src kinases as therapeutic targets for cancer,” Nature Reviews Clinical Oncology, vol. 6, no. 10, pp. 587–595, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. E. M. Rubin, Y. Guo, K. Tu, J. Xie, X. Zi, and B. H. Hoang, “Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma,” Molecular Cancer Therapeutics, vol. 9, no. 3, pp. 731–741, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. Y. Guo, X. Zi, Z. Koontz et al., “Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells,” Journal of Orthopaedic Research, vol. 25, no. 7, pp. 964–971, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. F. Engin, T. Bertin, O. Ma et al., “Notch signaling contributes to the pathogenesis of human osteosarcomas,” Human Molecular Genetics, vol. 18, no. 8, pp. 1464–1470, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. D. P. M. Hughes, “How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize,” Cancer Treatment and Research, vol. 152, pp. 479–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Tanaka, T. Setoguchi, M. Hirotsu et al., “Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation,” British Journal of Cancer, vol. 100, no. 12, pp. 1957–1965, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. P. Zhang, Y. Yang, P. A. Zweidler-McKay, and D. P. M. Hughes, “Critical role of notch signaling in osteosarcoma invasion and metastasis,” Clinical Cancer Research, vol. 14, no. 10, pp. 2962–2969, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. Y. Soini, J. Satta, M. Määttä, and H. Autio-Harmainen, “Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart,” The Journal of Pathology, vol. 194, no. 2, pp. 225–231, 2001. View at Google Scholar
  57. Y. Kato, T. Yamashita, and M. Ishikawa, “Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells,” Oncology reports, vol. 9, no. 3, pp. 565–569, 2002. View at Google Scholar · View at Scopus
  58. P. P. H. Lee, J. J. Hwang, G. Murphy, and M. M. Ip, “Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells,” Endocrinology, vol. 141, no. 10, pp. 3764–3773, 2000. View at Google Scholar · View at Scopus
  59. K. Soreide, E. A. Janssen, H. Kömer, and J. P. A. Baak, “Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis,” Journal of Pathology, vol. 209, no. 2, pp. 147–156, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. Y. Y. Cheng, L. Huang, K. M. Lee, K. Li, and S. M. Kumta, “Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines,” Pediatric Blood and Cancer, vol. 42, no. 5, pp. 410–415, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. P. Heikkila, O. Teronen, M. Y. Hirn et al., “Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate,” Journal of Surgical Research, vol. 111, no. 1, pp. 45–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. F. Xin, Y. K. Kim, and S. T. Jung, “Risedronate inhibits human osteosarcoma cell invasion,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article 105, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. D. Heymann, B. Ory, F. Gouin, J. R. Green, and F. Rédini, “Bisphosphonates: new therapeutic agents for the treatment of bone tumors,” Trends in Molecular Medicine, vol. 10, no. 7, pp. 337–343, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. G. Moriceau, B. Ory, B. Gobin et al., “Therapeutic approach of primary bone tumours by bisphosphonates,” Current Pharmaceutical Design, vol. 16, no. 27, pp. 2981–2987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. H. J. Cho, T. S. Lee, J. B. Park et al., “Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression,” Journal of Biochemistry and Molecular Biology, vol. 40, no. 6, pp. 1069–1076, 2007. View at Google Scholar · View at Scopus
  66. C. E. Macsai, B. K. Foster, and C. J. Xian, “Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair,” Journal of Cellular Physiology, vol. 215, no. 3, pp. 578–587, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. D. A. Glass, P. Bialek, J. D. Ahn et al., “Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation,” Developmental Cell, vol. 8, no. 5, pp. 751–764, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. Y. Kawano and R. Kypta, “Secreted antagonists of the Wnt signalling pathway,” Journal of Cell Science, vol. 116, no. 13, pp. 2627–2634, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. R. Baron and G. Rawadi, “Minireview: targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton,” Endocrinology, vol. 148, no. 6, pp. 2635–2643, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. E. Canalis, A. Giustina, and J. P. Bilezikian, “Mechanisms of anabolic therapies for osteoporosis,” The New England Journal of Medicine, vol. 357, no. 9, pp. 850–916, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. C. Hsieh, L. Kodjabachian, M. L. Rebbert et al., “A new secreted protein that binds to Wnt proteins and inhibits their activites,” Nature, vol. 398, no. 6726, pp. 431–436, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. O. Tetsu and F. McCormick, “β-catenin regulates expression of cyclin D1 in colon carcinoma cells,” Nature, vol. 398, no. 6726, pp. 422–426, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. T. C. He, A. B. Sparks, C. Rago et al., “Identification of c-MYC as a target of the APC pathway,” Science, vol. 281, no. 5382, pp. 1509–1512, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. H. C. Crawford, B. M. Fingleton, L. A. Rudolph-Owen et al., “The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors,” Oncogene, vol. 18, no. 18, pp. 2883–2891, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. P. J. Kim, J. Plescia, H. Clevers, E. R. Fearon, and D. C. Altieri, “Survivin and molecular pathogenesis of colorectal cancer,” The Lancet, vol. 362, no. 9379, pp. 205–209, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. R. C. Haydon, A. Deyrup, A. Ishikawa et al., “Cytoplasmic and/or nuclear accumulation of the β-catenin protein is a frequent event in human osteosarcoma,” International Journal of Cancer, vol. 102, no. 4, pp. 338–342, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. K. Iwaya, H. Ogawa, M. Kuroda, M. Izumi, T. Ishida, and K. Mukai, “Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 6, pp. 525–529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Iwao, Y. Miyoshi, G. Nawa, H. Yoshikawa, T. Ochi, and Y. Nakamura, “Frequent β-catenin abnormalities in bone and soft-tissue tumors,” Japanese Journal of Cancer Research, vol. 90, no. 2, pp. 205–209, 1999. View at Google Scholar · View at Scopus
  79. B. H. Hoang, T. Kubo, J. H. Healey et al., “Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma,” International Journal of Cancer, vol. 109, no. 1, pp. 106–111, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. B. H. Hoang, T. Kubo, J. H. Healey et al., “Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-β-catenin pathway,” Cancer Research, vol. 64, no. 8, pp. 2734–2739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Polakis, “Wnt signaling and cancer,” Genes and Development, vol. 14, no. 15, pp. 1837–1851, 2000. View at Google Scholar · View at Scopus
  82. P. C. Leow, Q. Tian, Z. Y. Ong, Z. Yang, and P. L. R. Ee, “Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells,” Investigational New Drugs, vol. 28, no. 6, pp. 766–782, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. Mazieres, B. He, L. You et al., “Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer,” Cancer Research, vol. 64, no. 14, pp. 4717–4720, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. Y. C. Lin, L. You, Z. Xu et al., “Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 635–640, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. L. Ai, Q. Tao, S. Zhong et al., “Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer,” Carcinogenesis, vol. 27, no. 7, pp. 1341–1348, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. S. Yamashita, Y. Tsujino, K. Moriguchi, M. Tatematsu, and T. Ushijima, “Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2-deoxycytidine treatment and oligonucleotide microarray,” Cancer Science, vol. 97, no. 1, pp. 64–71, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. Artavanis-Tsakonas, M. D. Rand, and R. J. Lake, “Notch signaling: cell fate control and signal integration in development,” Science, vol. 284, no. 5415, pp. 770–776, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Kopan and M. X. Ilagan, “The canonical notch signaling pathway: unfolding the activation mechanism,” Cell, vol. 137, no. 2, pp. 216–233, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. T. Iso, L. Kedes, and Y. Hamamori, “HES and HERP families: multiple effectors of the Notch signaling pathway,” Journal of Cellular Physiology, vol. 194, no. 3, pp. 237–255, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. M. C. Maa, T. H. Leu, D. J. Mccarley, R. C. Schatzman, and S. J. Parsons, “Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 15, pp. 6981–6985, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Mori, L. Ronnstrand, K. Yokote et al., “Identification of two juxtamembrane autophosphorylation sites in the PGDF β-receptor; Involvement in the interaction with Src family tyrosine kinases,” The EMBO Journal, vol. 12, no. 6, pp. 2257–2264, 1993. View at Google Scholar · View at Scopus
  92. M. P. Playford and M. D. Schaller, “The interplay between Src and integrins in normal and tumor biology,” Oncogene, vol. 23, no. 48, pp. 7928–7946, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Talpaz, N. P. Shah, H. Kantarjian et al., “Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2531–2541, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. F. M. Johnson, B. Saigal, M. Talpaz, and N. J. Donato, “Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells,” Clinical Cancer Research, vol. 11, no. 19, part 1, pp. 6924–6932, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. M. M. Schittenhelm, S. Shiraga, A. Schroeder et al., “Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies,” Cancer Research, vol. 66, no. 1, pp. 473–481, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. A. C. Shor, E. A. Keschman, F. Y. Lee et al., “Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on Src kinase for survival,” Cancer Research, vol. 67, no. 6, pp. 2800–2808, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. L. B. Owen-Schaub, K. L. Van Golen, L. L. Hill, and J. E. Price, “Fas and Fas ligand interactions suppress melanoma lung metastasis,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1717–1723, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. T. J. Sayers, A. D. Brooks, J. K. Lee et al., “Molecular mechanisms of immune-mediated lysis of murine renal cancer: differential contributions of perforin-dependent versus fas-mediated pathways in lysis by NK and T cells,” Journal of Immunology, vol. 161, no. 8, pp. 3957–3965, 1998. View at Google Scholar · View at Scopus
  99. J. K. Lee, T. J. Sayers, A. D. Brooks et al., “IFN-γ-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells,” Journal of Immunology, vol. 164, no. 1, pp. 231–239, 2000. View at Google Scholar · View at Scopus
  100. N. Gordon, C. A. Arndt, D. S. Hawkins et al., “Fas expression in lung metastasis from osteosarcoma patients,” Journal of Pediatric Hematology/Oncology, vol. 27, no. 11, pp. 611–615, 2005. View at Publisher · View at Google Scholar
  101. L. L. Worth, E. A. Lafleur, S. F. Jia, and E. S. Kleinerman, “Fas expression inversely correlates with metastatic potential in osteosarcoma cells,” Oncology Reports, vol. 9, no. 4, pp. 823–827, 2002. View at Google Scholar · View at Scopus
  102. M. E. Peter, R. C. Budd, J. Desbarats et al., “The CD95 receptor: apoptosis revisited,” Cell, vol. 129, no. 3, pp. 447–450, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. L. Chen, S. M. Park, A. V. Tumanov et al., “CD95 promotes tumour growth,” Nature, vol. 465, no. 7297, pp. 492–496, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. A. Strasser, P. J. Jost, and S. Nagata, “The many roles of FAS receptor signaling in the immune system,” Immunity, vol. 30, no. 2, pp. 180–192, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. F. H. Igney and P. H. Krammer, “Death and anti-death: tumour resistance to apoptosis,” Nature Reviews Cancer, vol. 2, no. 4, pp. 277–288, 2002. View at Google Scholar · View at Scopus
  106. R. Gorlick, P. Anderson, I. Andrulis et al., “Biology of ghildhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary,” Clinical Cancer Research, vol. 9, no. 15, pp. 5442–5453, 2003. View at Google Scholar · View at Scopus
  107. N. V. Koshkina, C. Khanna, A. Mendoza, H. Guan, L. DeLauter, and E. S. Kleinerman, “Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the fas pathwayin the metastatic process of osteosarcoma,” Molecular Cancer Research, vol. 5, no. 10, pp. 991–999, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. E. A. Lafleur, S. F. Jia, L. L. Worth, Z. Zhou, L. B. Owen-Schaub, and E. S. Kleinerman, “Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells,” Cancer Research, vol. 61, no. 10, pp. 4066–4071, 2001. View at Google Scholar · View at Scopus
  109. E. A. Lafleur, N. V. Koshkina, J. Stewart et al., “Increased Fas expression reduces the metastatic potential of human osteosarcoma cells,” Clinical Cancer Research, vol. 10, no. 23, pp. 8114–8119, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. Z. Zhou, E. A. Lafleur, N. V. Koshkina, L. L. Worth, M. S. Lester, and E. S. Kleinerman, “Interleukin-12 up-regulates Fas expression in human osteosarcoma and Ewing's sarcoma cells by enhancing its promoter activity,” Molecular Cancer Research, vol. 3, no. 12, pp. 685–691, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. X. Duan, S. F. Jia, N. Koshkina, and E. S. Kleinerman, “Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases,” Cancer, vol. 106, no. 6, pp. 1382–1388, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. K. Mori, K. Ando, and D. Heymann, “Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases,” Expert Review of Anticancer Therapy, vol. 8, no. 2, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. S. Lebel-Binay, A. Berger, F. Zinzindohoué et al., “Interleukin-18: biological properties and clinical implications,” European Cytokine Network, vol. 11, no. 1, pp. 15–25, 2000. View at Google Scholar · View at Scopus
  114. J. Golab, “Interleukin 18—Interferon γ inducing factor—a novel player in tumour immunotherapy?” Cytokine, vol. 12, no. 4, pp. 332–338, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. R. Cao, J. Farnebo, M. Kurimoto, and Y. Cao, “Interleukin-18 acts as an angiogenesis and tumor suppressor,” The FASEB Journal, vol. 13, no. 15, pp. 2195–2202, 1999. View at Google Scholar · View at Scopus
  116. T. Ohtsuki, M. J. Micallef, K. Kohno, T. Tanimoto, M. Ikeda, and M. Kurimoto, “Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells,” Anticancer Research, vol. 17, no. 5, pp. 3253–3258, 1997. View at Google Scholar · View at Scopus
  117. Y. Nakamura, N. Yamada, H. Ohyama et al., “Effect of interleukin-18 on metastasis of mouse osteosarcoma cells,” Cancer Immunology, Immunotherapy, vol. 55, no. 9, pp. 1151–1158, 2006. View at Publisher · View at Google Scholar · View at PubMed
  118. N. Yamada, M. Hata, H. Ohyama et al., “Immunotherapy with interleukin-18 in combination with preoperative chemotherapy with ifosfamide effectively inhibits postoperative progression of pulmonary metastases in a mouse osteosarcoma model,” Tumor Biology, vol. 30, no. 4, pp. 176–184, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell, “Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix,” Science, vol. 267, no. 5199, pp. 891–893, 1995. View at Google Scholar · View at Scopus
  120. J. Grossmann, K. Walther, M. Artinger, S. Kiessling, and J. Schölmerich, “Apoptotic signaling during initiation of detachment-induced apoptosis ("anoikis") of primary human intestinal epithelial cells,” Cell Growth and Differentiation, vol. 12, no. 3, pp. 147–155, 2001. View at Google Scholar · View at Scopus
  121. S. M. Frisch and R. A. Screaton, “Anoikis mechanisms,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 555–562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. C. M. Diaz-Montero and B. W. McIntyre, “Acquisition of anoikis resistance in human osteosarcoma cells,” European Journal of Cancer, vol. 39, no. 16, pp. 2395–2402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. L. A. Liotta and E. Kohn, “Anoikis: cancer and the homeless cell,” Nature, vol. 430, no. 7003, pp. 973–974, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. P. Mehlen and A. Puisieux, “Metastasis: a question of life or death,” Nature Reviews Cancer, vol. 6, no. 6, pp. 449–458, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. L. Trusolino, A. Bertotti, and P. M. Comoglio, “A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth,” Cell, vol. 107, no. 5, pp. 643–654, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. S. N. Nikolopoulos, P. Blaikie, T. Yoshioka, W. Guo, and F. G. Giancotti, “Integrin β4 signaling promotes tumor angiogenesis,” Cancer Cell, vol. 6, no. 5, pp. 471–483, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. W. Guo, Y. Pylayeva, A. Pepe et al., “β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis,” Cell, vol. 126, no. 3, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. X. Wan, S. Y. Kim, L. M. Guenther et al., “Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin,” Oncogene, vol. 28, no. 38, pp. 3401–3411, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. P. Chiarugi and E. Giannoni, “Anoikis: a necessary death program for anchorage-dependent cells,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1352–1364, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. S. M. Janes and F. M. Watt, “Switch from αvβ5 to αvβ6 integrin expression protects squamous cell carcinomas from anoikis,” Journal of Cell Biology, vol. 166, no. 3, pp. 419–431, 2004. View at Publisher · View at Google Scholar · View at PubMed
  131. R. V. Stan, “Structure of caveolae,” Biochimica et Biophysica Acta, vol. 1746, no. 3, pp. 334–348, 2005. View at Publisher · View at Google Scholar · View at PubMed
  132. K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. W. Anderson, “Caveolin, a protein component of caveolae membrane coats,” Cell, vol. 68, no. 4, pp. 673–682, 1992. View at Google Scholar · View at Scopus
  133. K. R. Solomon, T. E. Danciu, L. D. Adolphson, L. E. Hecht, and P. V. Hauschka, “Caveolin-enriched membrane signaling complexes in human and murine osteoblasts,” Journal of Bone and Mineral Research, vol. 15, no. 12, pp. 2380–2390, 2000. View at Google Scholar · View at Scopus
  134. L. Cantiani, M. C. Manara, C. Zucchini et al., “Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling,” Cancer Research, vol. 67, no. 16, pp. 7675–7685, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. A. B. Al-Mehdi, K. Tozawa, A. B. Fisher, L. Shientag, A. Lee, and R. J. Muschel, “Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis,” Nature Medicine, vol. 6, no. 1, pp. 100–102, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. G. M. Jeffree, C. H. Price, and H. A. Sissons, “The metastatic patterns of osteosarcoma,” British Journal of Cancer, vol. 32, no. 1, pp. 87–107, 1975. View at Google Scholar · View at Scopus
  137. F. Lin, S.-E. Zheng, Z. Shen et al., “Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma,” Medical Oncology, vol. 28, no. 2, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at PubMed
  138. C. Laverdiere, B. H. Hoang, R. Yang et al., “Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma,” Clinical Cancer Research, vol. 11, no. 7, pp. 2561–2567, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. C. Y. Huang, C. Y. Lee, M. Y. Chen et al., “Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-κB-dependent pathways,” Journal of Cellular Physiology, vol. 221, no. 1, pp. 204–212, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. P. M. Murphy, “Chemokines and the molecular basis of cancer metastasis,” The New England Journal of Medicine, vol. 345, no. 11, pp. 833–835, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. T. Murakami, W. Maki, A. R. Cardones et al., “Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells,” Cancer Research, vol. 62, no. 24, pp. 7328–7334, 2002. View at Google Scholar · View at Scopus
  143. C. J. Scotton, J. L. Wilson, K. Scott et al., “Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer,” Cancer Research, vol. 62, no. 20, pp. 5930–5938, 2002. View at Google Scholar · View at Scopus
  144. E. Pradelli, B. Karimdjee-Soilihi, J. F. Michiels et al., “Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs,” International Journal of Cancer, vol. 125, no. 11, pp. 2586–2594, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. F. de Nigris, R. Rossiello, C. Schiano et al., “Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis,” Cancer Research, vol. 68, no. 6, pp. 1797–1808, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. M. M. Robledo, R. A. Bartolomé, N. Longo et al., “Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 45098–45105, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. D. Jones, R. J. Benjamin, A. Shahsafaei, and D. M. Dorfman, “The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia,” Blood, vol. 95, no. 2, pp. 627–632, 2000. View at Google Scholar · View at Scopus
  148. L. Goldberg-Bittman, E. Neumark, O. Sagi-Assif et al., “The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines,” Immunology Letters, vol. 92, no. 1-2, pp. 171–178, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. P. Mangeat, C. Roy, and M. Martin, “ERM proteins in cell adhesion and membrane dynamics,” Trends in Cell Biology, vol. 9, no. 5, pp. 187–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Hirao, N. Sato, T. Kondo et al., “Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signaling pathway,” Journal of Cell Biology, vol. 135, no. 1, pp. 37–51, 1996. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Gautreau, P. Poullet, D. Louvard, and M. Arpin, “Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7300–7305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  152. K. W. Hunter, “Ezrin, a key component in tumor metastasis,” Trends in Molecular Medicine, vol. 10, no. 5, pp. 201–204, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  153. S. Ilmonen, A. Vaheri, S. Asko-Seljavaara, and O. Carpen, “Ezrin in primary cutaneous melanoma,” Modern Pathology, vol. 18, no. 4, pp. 503–510, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. W. H. Weng, J. Åhlén, K. Åström, W. O. Lui, and C. Larsson, “Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas,” Clinical Cancer Research, vol. 11, no. 17, pp. 6198–6204, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. C. Khanna, X. Wan, S. Bose et al., “The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis,” Nature Medicine, vol. 10, no. 2, pp. 182–186, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. L. Ren, S. H. Hong, J. Cassavaugh et al., “The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC,” Oncogene, vol. 28, no. 6, pp. 792–802, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  157. C. Khanna, J. Khan, P. Nguyen et al., “Metastasis-associated differences in gene expression in a murine model of osteosarcoma,” Cancer Research, vol. 61, no. 9, pp. 3750–3759, 2001. View at Google Scholar · View at Scopus
  158. S. Ikeda, H. Sumii, K. Akiyama et al., “Amplification of both c-myc and c-raf-1 oncogenes in a human osteosarcoma,” Japanese Journal of Cancer Research, vol. 80, no. 1, pp. 6–9, 1989. View at Google Scholar · View at Scopus
  159. S. M. Wilhelm, C. Carter, L. Tang et al., “BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis,” Cancer Research, vol. 64, no. 19, pp. 7099–7109, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. Y. Pignochino, G. Grignani, G. Cavalloni et al., “Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways,” Molecular Cancer, vol. 8, article 118, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  161. V. Hesse, G. Jahreis, H. Schambach et al., “Insulin-like growth factor I correlations to changes of the hormonal status in puberty and age,” Experimental and Clinical Endocrinology, vol. 102, no. 4, pp. 289–298, 1994. View at Google Scholar · View at Scopus
  162. N. Kawai, S. Kanzaki, S. Takano-Watou et al., “Serum free insulin-like growth factor I (IGF-I), total IGF-I, and IGF- binding protein-3 concentrations in normal children and children with growth hormone deficiency,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 82–89, 1999. View at Publisher · View at Google Scholar
  163. N. Herzlieb, B. W. Gallaher, A. Berthold, R. Hille, and W. Kiess, “Insulin-like growth factor-I inhibits the progression of human U-2 OS osteosarcoma cells towards programmed cell death through interaction with the IGF-I receptor,” Cellular and Molecular Biology, vol. 46, no. 1, pp. 71–77, 2000. View at Google Scholar · View at Scopus
  164. C. C. Kappel, M. C. Velez-Yanguas, S. Hirschfeld, and L. J. Helman, “Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth,” Cancer Research, vol. 54, no. 10, pp. 2803–2807, 1994. View at Google Scholar · View at Scopus
  165. M. Pollak, A. W. Sem, M. Richard, E. Tetenes, and R. Bell, “Inhibition of metastatic behavior of murine osteosarcoma by hypophysectomy,” Journal of the National Cancer Institute, vol. 84, no. 12, pp. 966–971, 1992. View at Google Scholar · View at Scopus
  166. P. J. Mansky, D. J. Liewehr, S. M. Steinberg et al., “Treatment of metastatic osteosarcoma with the somatostatin analog oncoLar: significant reduction of insulin-like growth factor-1 serum levels,” Journal of Pediatric Hematology/Oncology, vol. 24, no. 6, pp. 440–446, 2002. View at Publisher · View at Google Scholar
  167. C. Khanna, J. Prehn, D. Hayden et al., “A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy,” Clinical Cancer Research, vol. 8, no. 7, pp. 2406–2412, 2002. View at Google Scholar · View at Scopus
  168. Y. H. Wang, Z. X. Wang, Y. Qiu et al., “Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells,” Molecular and Cellular Biochemistry, vol. 327, no. 1-2, pp. 257–266, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  169. Y. H. Wang, J. Xiong, S. F. Wang et al., “Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo,” Molecular and Cellular Biochemistry, vol. 341, no. 1-2, pp. 225–233, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  170. E. A. Kolb, R. Gorlick, P. J. Houghton et al., “Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program,” Pediatric Blood and Cancer, vol. 50, no. 6, pp. 1190–1197, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. E. A. Kolb, D. Kamara, W. Zhang et al., “R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts,” Pediatric Blood and Cancer, vol. 55, no. 1, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. Y. H. Wang, X. D. Han, Y. Qiu et al., “Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma,” Journal of Surgical Oncology, vol. 105, no. 3, pp. 235–243, 2012. View at Google Scholar
  173. K. Pantel and R. H. Brakenhoff, “Dissecting the metastatic cascade,” Nature Reviews Cancer, vol. 4, no. 6, pp. 448–456, 2004. View at Google Scholar · View at Scopus
  174. J. A. Aguirre-Ghiso, “Models, mechanisms and clinical evidence for cancer dormancy,” Nature Reviews Cancer, vol. 7, no. 11, pp. 834–846, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. G. N. Naumov, J. L. Townson, I. C. MacDonald et al., “Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases,” Breast Cancer Research and Treatment, vol. 82, no. 3, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  176. L. Holmgren, M. S. O'Reilly, and J. Folkman, “Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression,” Nature Medicine, vol. 1, no. 2, pp. 149–153, 1995. View at Google Scholar · View at Scopus
  177. H. Wikman, R. Vessella, and K. Pantel, “Cancer micrometastasis and tumour dormancy,” APMIS, vol. 116, no. 7-8, pp. 754–770, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  178. G. N. Naumov, E. Bender, D. Zurakowski et al., “A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype,” Journal of the National Cancer Institute, vol. 98, no. 5, pp. 316–325, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  179. Y. Cao, M. S. O'Reilly, B. Marshall, E. Flynn, R. W. Ji, and J. Folkman, “Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases,” Journal of Clinical Investigation, vol. 101, no. 5, pp. 1055–1063, 1998. View at Google Scholar · View at Scopus
  180. E. Favaro, A. Amadori, and S. Indraccolo, “Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy,” APMIS, vol. 116, no. 7-8, pp. 648–659, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  181. D. Barkan, J. E. Green, and A. F. Chambers, “Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth,” European Journal of Cancer, vol. 46, no. 7, pp. 1181–1188, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  182. C. M. Koebel, W. Vermi, J. B. Swann et al., “Adaptive immunity maintains occult cancer in an equilibrium state,” Nature, vol. 450, no. 7171, pp. 903–907, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus