Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2015, Article ID 412068, 14 pages
http://dx.doi.org/10.1155/2015/412068
Research Article

Genomic, Epigenomic, and Transcriptomic Profiling towards Identifying Omics Features and Specific Biomarkers That Distinguish Uterine Leiomyosarcoma and Leiomyoma at Molecular Levels

1Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
2Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
3Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
4Department of Health Nutrition, Faculty of Health Science, Kio University, 4-2-4 Umami-naka, Koryo-cho, Kitakatsuragi-gun 635-0832, Japan
5Department of Obstetrics and Gynecology, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-0075, Japan

Received 21 September 2015; Accepted 24 November 2015

Academic Editor: Eugenie S. Kleinerman

Copyright © 2015 Tomoko Miyata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D'Angelo and J. Prat, “Uterine sarcomas: a review,” Gynecologic Oncology, vol. 116, no. 1, pp. 131–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Brooks, M. Zhan, T. Cote, and C. R. Baquet, “Surveillance, epidemiology, and end results analysis of 2677 cases of uterine sarcoma 1989–1999,” Gynecologic Oncology, vol. 93, no. 1, pp. 204–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Giuntoli II, D. S. Metzinger, C. S. DiMarco et al., “Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy,” Gynecologic Oncology, vol. 89, no. 3, pp. 460–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. Pritts, D. J. Vanness, J. S. Berek et al., “The prevalence of occult leiomyosarcoma at surgery for presumed uterine fibroids: a meta-analysis,” Gynecological Surgery, vol. 12, no. 3, pp. 165–177, 2015. View at Publisher · View at Google Scholar
  5. V. M. Abeler, O. Røyne, S. Thoresen et al., “Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients,” Histopathology, vol. 54, pp. 355–364, 1970. View at Google Scholar
  6. E. A. Vucic, K. L. Thu, K. Robison et al., “Translating cancer ‘omics’ to improved outcomes,” Genome Research, vol. 22, no. 2, pp. 188–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ueno, H. Okita, S. Akimoto et al., “DNA methylation profile distinguishes clear cell sarcoma of the kidney from other pediatric renal tumors,” PLoS ONE, vol. 8, no. 4, Article ID e62233, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Zhang, Y. Liu, N. Sun et al., “Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer,” Cell Reports, vol. 4, no. 3, pp. 542–553, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Buyse and S. Michiels, “Omics-based clinical trial designs,” Current Opinion in Oncology, vol. 25, no. 3, pp. 289–295, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Hensley, B. A. Barrette, K. Baumann et al., “Gynecologic Cancer InterGroup (GCIG) consensus review: uterine and ovarian leiomyosarcomas,” International Journal of Gynecological Cancer, vol. 24, no. 9, pp. S61–S66, 2014. View at Publisher · View at Google Scholar
  11. R. Pique-Regi, A. Cáceres, and J. R. González, “R-Gada: A fast and flexible pipeline for copy number analysis in association studies,” BMC Bioinformatics, vol. 11, article 380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Wang, L. Yan, Q. Hu et al., “IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data,” Bioinformatics, vol. 28, no. 5, pp. 729–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Y. McLean, D. Bristor, M. Hiller et al., “GREAT improves functional interpretation of cis-regulatory regions,” Nature Biotechnology, vol. 28, no. 5, pp. 495–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Yang, M. R. H. Estécio, K. Doshi, Y. Kondo, E. H. Tajara, and J.-P. J. Issa, “A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements,” Nucleic Acids Research, vol. 32, article e38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Raish, M. Khurshid, M. A. Ansari et al., “Analysis of molecular cytogenetic alterations in uterine leiomyosarcoma by array-based comparative genomic hybridization,” Journal of Cancer Research and Clinical Oncology, vol. 138, no. 7, pp. 1173–1186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Croce, A. Ribeiro, C. Brulard et al., “Uterine smooth muscle tumor analysis by comparative genomic hybridization: a useful diagnostic tool in challenging lesions,” Modern Pathology, vol. 28, no. 7, pp. 1001–1010, 2015. View at Publisher · View at Google Scholar
  17. S. Negrini, V. G. Gorgoulis, and T. D. Halazonetis, “Genomic instability—an evolving hallmark of cancer,” Nature Reviews Molecular Cell Biology, vol. 11, no. 3, pp. 220–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K.-I. Kawaguchi, Y. Oda, T. Saito et al., “Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis,” Journal of Pathology, vol. 201, no. 3, pp. 487–495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y.-L. Zhai, T. Nikaido, A. Orii, A. Horiuchi, T. Toki, and S. Fujii, “Frequent occurrence of loss of heterozygosity among tumor suppressor genes in uterine leiomyosarcoma,” Gynecologic Oncology, vol. 75, no. 3, pp. 453–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Lehtonen, M. Kiuru, S. Vanharanta et al., “Biallelic inactivation of Fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors,” The American Journal of Pathology, vol. 164, no. 1, pp. 17–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Mäkinen, M. Mehine, J. Tolvanen et al., “MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas,” Science, vol. 334, no. 6053, pp. 252–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Sandberg, “Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma,” Cancer Genetics and Cytogenetics, vol. 158, no. 1, pp. 1–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Mehine, E. Kaasinen, N. Mäkinen et al., “Characterization of uterine leiomyomas by whole-genome sequencing,” The New England Journal of Medicine, vol. 369, no. 1, pp. 43–53, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. K. M. Skubitz and A. P. N. Skubitz, “Differential gene expression in leiomyosarcoma,” Cancer, vol. 98, no. 5, pp. 1029–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Sansam, D. Goins, J. C. Siefert, E. A. Clowdus, and C. L. Sansam, “Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation,” Genes & Development, vol. 29, no. 5, pp. 555–566, 2015. View at Publisher · View at Google Scholar
  26. M. Mazumdar, S. Sundareshan, and T. Misteli, “Human chromokinesin KIF4A functions in chromosome condensation and segregation,” Journal of Cell Biology, vol. 166, no. 5, pp. 613–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Uchida, K. Uzawa, A. Kasamatsu et al., “Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis,” PLoS ONE, vol. 8, no. 2, Article ID e56381, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. L. W. Hebbard, J. Maurer, A. Miller et al., “Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo,” Cancer Research, vol. 70, no. 21, pp. 8863–8873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. de Smet and A. Loriot, “DNA hypomethylation in cancer: epigenetic scars of a neoplastic journey,” Epigenetics, vol. 5, no. 3, pp. 206–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Maekawa, S. Sato, Y. Yamagata et al., “Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas,” PLoS ONE, vol. 8, no. 6, Article ID e66632, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Weisenberger, “Characterizing DNA methylation alterations from The Cancer Genome Atlas,” Journal of Clinical Investigation, vol. 124, no. 1, pp. 17–23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Easwaran, S. E. Johnstone, L. Van Neste et al., “A DNA hypermethylation module for the stem/progenitor cell signature of cancer,” Genome Research, vol. 22, no. 5, pp. 837–849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Wu and T. Maniatis, “A striking organization of a large family of human neural cadherin-like cell adhesion genes,” Cell, vol. 97, no. 6, pp. 779–790, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Dallosso, B. Øster, A. Greenhough et al., “Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways,” Oncogene, vol. 31, no. 40, pp. 4409–4419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. T. I. Lee, R. G. Jenner, L. A. Boyer et al., “Control of developmental regulators by Polycomb in human embryonic stem cells,” Cell, vol. 125, no. 2, pp. 301–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. K. D. Hansen, W. Timp, H. C. Bravo et al., “Increased methylation variation in epigenetic domains across cancer types,” Nature Genetics, vol. 43, no. 8, pp. 768–775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Satelli, A. Mitra, J. J. Cutrera et al., “Universal marker and detection tool for human sarcoma circulating tumor cells,” Cancer Research, vol. 74, no. 6, pp. 1645–1650, 2014. View at Publisher · View at Google Scholar · View at Scopus