Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2018, Article ID 7972389, 8 pages
https://doi.org/10.1155/2018/7972389
Research Article

Radiation Therapy for Retroperitoneal Sarcomas: Influences of Histology, Grade, and Size

1Department of Surgery, Mayo Clinic, Rochester, MN 55901, USA
2Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55901, USA
3Department of Pathology, Mayo Clinic, Rochester, MN 55901, USA
4Department of Medical Oncology, Mayo Clinic, Rochester, MN 55901, USA

Correspondence should be addressed to Travis E. Grotz; ude.oyam@sivart.ztorg

Received 27 June 2018; Revised 26 October 2018; Accepted 14 November 2018; Published 5 December 2018

Academic Editor: Antoine Italiano

Copyright © 2018 Jennifer L. Leiting et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Anaya, D. C. Lev, and R. E. Pollock, “The role of surgical margin status in retroperitoneal sarcoma,” Journal of Surgical Oncology, vol. 98, no. 8, pp. 607–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Lewis, D. Leung, J. M. Woodruff, and M. F. Brennan, “Retroperitoneal soft-tissue sarcoma: analysis of 500 patients treated and followed at a single institution,” Annals of Surgery, vol. 228, no. 3, pp. 355–365, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. C. P. Raut and P. W. T. Pisters, “Retroperitoneal sarcomas: combined-modality treatment approaches,” Journal of Surgical Oncology, vol. 94, no. 1, pp. 81–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bonvalot, M. Rivoire, M. Castaing et al., “Primary retroperitoneal sarcomas: a multivariate analysis of surgical factors associated with local control,” Journal of Clinical Oncology, vol. 27, no. 1, pp. 31–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Singer, C. R. Antonescu, E. Riedel, and M. F. Brennan, “Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma,” Annals of Surgery, vol. 238, no. 3, pp. 358–370, 2003. View at Google Scholar
  6. A. Stojadinovic, A. Yeh, and M. F. Brennan, “Completely resected recurrent soft tissue sarcoma: primary anatomic site governs outcomes,” Journal of the American College of Surgeons, vol. 194, no. 4, pp. 436–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Yang, A. E. Chang, A. R. Baker et al., “Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity,” Journal of Clinical Oncology, vol. 16, no. 1, pp. 197–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Koshy, S. E. Rich, and M. M. Mohiuddin, “Improved survival with radiation therapy in high-grade soft tissue sarcomas of the extremities: a SEER analysis,” International Journal of Radiation Oncology, Biology, Physics, vol. 77, no. 1, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Schreiber, J. Rineer, E. Katsoulakis et al., “Impact of postoperative radiation on survival for high-grade soft tissue sarcoma of the extremities after limb sparing radical resection,” American Journal of Clinical Oncology, vol. 35, no. 1, pp. 13–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Lazarides, W. C. Eward, P. J. Speicher et al., “The use of radiation therapy in well-differentiated soft tissue sarcoma of the extremities: an NCDB review,” Sarcoma, vol. 2015, Article ID 186581, 12 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Ramey, R. Yechieli, W. Zhao et al., “Limb-sparing surgery plus radiotherapy results in superior survival: an analysis of patients with high-grade, extremity soft-tissue sarcoma from the NCDB and SEER,” Cancer Medicine, vol. 7, no. 9, pp. 4228–4239, 2018. View at Publisher · View at Google Scholar
  12. A. H. Choi, J. S. Barnholtz-Sloan, and J. A. Kim, “Effect of radiation therapy on survival in surgically resected retroperitoneal sarcoma: a propensity score-adjusted SEER analysis,” Annals of Oncology, vol. 23, no. 9, pp. 2449–2457, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. W. H. Tseng, S. R. Martinez, L. Do et al., “Lack of survival benefit following adjuvant radiation in patients with retroperitoneal sarcoma: a SEER analysis,” Journal of Surgical Research, vol. 168, no. 2, pp. e173–e180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Giuliano, N. Nagarajan, J. K. Canner et al., “Predictors of improved survival for patients with retroperitoneal sarcoma,” Surgery, vol. 160, no. 6, pp. 1628–1635, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. M. von Mehren, R. L. Randall, R. S. Benjamin et al., “Soft tissue sarcoma, version 2.2014,” Journal of the National Comprehensive Cancer Network, vol. 12, no. 4, pp. 473–483, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. Porter, N. N. Baxter, and P. W. T. Pisters, “Retroperitoneal Sarcoma: a population-based analysis of epidemiology, surgery, and radiotherapy,” Cancer, vol. 106, no. 7, pp. 1610–1616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. Raut, R. Miceli, D. C. Strauss et al., “External validation of a multi-institutional retroperitoneal sarcoma nomogram,” Cancer, vol. 122, no. 9, pp. 1417–1424, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. M. C. Tan, M. F. Brennan, D. Kuk et al., “Histology-based classification predicts pattern of recurrence and improves risk stratification in primary retroperitoneal sarcoma,” Annals of Surgery, vol. 263, no. 3, pp. 593–600, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Y. Bilimoria, A. K. Stewart, D. P. Winchester, and C. Y. Ko, “The National Cancer Data Base: a powerful initiative to improve cancer care in the United States,” Annals of Surgical Oncology, vol. 15, no. 3, pp. 683–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. V. Raval, K. Y. Bilimoria, A. K. Stewart, D. J. Bentrem, and C. Y. Ko, “Using the NCDB for cancer care improvement: an introduction to available quality assessment tools,” Journal of Surgical Oncology, vol. 99, no. 8, pp. 488–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. A. Deyo, D. C. Cherkin, and M. A. Ciol, “Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases,” Journal of Clinical Epidemiology, vol. 45, no. 6, pp. 613–619, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. The R Foundation, The R Project for Statistical Computing, October 2017, https://www.r-project.org/.
  23. D. P. Nussbaum, P. J. Speicher, B. C. Gulack et al., “Long-term oncologic outcomes after neoadjuvant radiation therapy for retroperitoneal sarcomas,” Annals of Surgery, vol. 262, no. 1, pp. 163–170, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Colbert, W. A. Hall, D. Nickleach et al., “Chemoradiation therapy sequencing for resected pancreatic adenocarcinoma in the National Cancer Data Base,” Cancer, vol. 120, no. 4, pp. 499–506, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Willett, A. L. Schiller, H. D. Suit, H. J. Mankin, and A. Rosenberg, “The histologic response of soft tissue sarcoma to radiation therapy,” Cancer, vol. 60, no. 7, pp. 1500–1504, 1987. View at Publisher · View at Google Scholar
  26. C. Mussi, P. Collini, R. Miceli et al., “The prognostic impact of dedifferentiation in retroperitoneal liposarcoma: a series of surgically treated patients at a single institution,” Cancer, vol. 113, no. 7, pp. 1657–1665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. O. J. Hines, S. Nelson, W. J. Quinones-Baldrich, and F. R. Eilber, “Leiomyosarcoma of the inferior vena cava: prognosis and comparison with leiomyosarcoma of other anatomic sites,” Cancer, vol. 85, no. 5, pp. 1077–1083, 1999. View at Publisher · View at Google Scholar
  28. ESMO/European Sarcoma Network Working Group, “Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 25, no. 3, pp. iii102–iii112, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Bergquist, C. A. Thiels, C. B. Storlie, D. M. Nagorney, and M. J. Truty, “How matching may impact interpretation: comments on “A matched-cohort analysis of 192 pancreatic anaplastic carcinomas and 960 pancreatic adenocarcinomas: a 13-year North American experience using the National Cancer Data Base (NCDB)”,” Surgery, vol. 160, no. 6, pp. 1714-1715, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Bergquist, C. R. Shubert, C. B. Storlie, E. B. Habermann, and M. J. Truty, “Patient selection for neoadjuvant therapy in early-stage pancreatic cancer,” Journal of Clinical Oncology, vol. 35, no. 14, pp. 1622-1623, 2017. View at Publisher · View at Google Scholar · View at Scopus