Table of Contents
Structural Biology
Volume 2013 (2013), Article ID 249234, 10 pages
http://dx.doi.org/10.1155/2013/249234
Research Article

Structure Topology Prediction of Discriminative Sequence Motifs in Membrane Proteins with Domains of Unknown Functions

Hochschule Mittweida, University of Applied Sciences, Technikumplatz 17, 09648 Mittweida, Germany

Received 31 October 2012; Accepted 15 January 2013

Academic Editor: Shandar Ahmad

Copyright © 2013 Steffen Grunert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Luckey, Membrane Structural Biology, Cambrigde University Press, 2008.
  2. M. H. Y. Lam and I. Stagljar, “Strategies for membrane interaction proteomics: proteomics: no mass spectrometry required,” Proteomics, vol. 12, no. 10, pp. 1519–1526, 2012. View at Publisher · View at Google Scholar
  3. D. Eisenberg, E. M. Marcotte, I. Xenarios, and T. O. Yeates, “Protein function the post-genomic era,” Nature, vol. 405, no. 6788, pp. 823–826, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Lan, G. T. Montelione, and M. Gerstein, “Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level,” Current Opinion in Chemical Biology, vol. 7, no. 1, pp. 44–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Marsico, D. Labudde, T. Sapra, D. J. Muller, and M. Schroeder, “A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy,” Bioinformatics, vol. 23, no. 2, pp. e231–e236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Childers, G. Eckel, A. Himmel, and J. Caldwell, “A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates,” Medical Hypotheses, vol. 68, no. 1, pp. 101–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Rowe, S. Miller, and E. J. Sorscher, “Cystic fibrosis,” The New England Journal of Medicine, vol. 352, no. 19, pp. 1992–2001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Tan, T. T. Hwee, and M. C. M. Chung, “Membrane proteins and membrane proteomics,” Proteomics, vol. 8, no. 19, pp. 3924–3932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. C. Brito and D. W. Andrews, “Removing bias against membrane proteins in interaction networks,” BMC Systems Biology, vol. 5, article 169, 2011. View at Google Scholar
  10. P. G. Sadowski, A. J. Groen, P. Dupree, and K. S. Lilley, “Subcellular localization of membrane proteins,” Proteomics, vol. 8, no. 19, pp. 3991–4011, 2008. View at Google Scholar
  11. J. U. Bowie, “Solving the membrane protein folding problem,” Nature, vol. 438, no. 7068, pp. 581–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. E. Tusnady, Z. Dosztanyi, and I. Simon, “Transmembrane proteins in the protein data bank: identification and classification,” Bioinformatics, vol. 20, no. 17, pp. 2964–2972, 2004. View at Google Scholar
  13. G. E. Tusnady, Z. Dosztanyi, and I. Simon, “Pdbtm: selection and membrane localization of transmembrane proteins in the protein data bank,” Nucleic Acids Research, vol. 33, pp. D275–D278, 2005. View at Google Scholar
  14. A. Krogh, B. Larsson, G. Von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Rost, R. Casadio, P. Fariselli, and C. Sander, “Transmembrane helices predicted at 95% accuracy,” Protein Science, vol. 4, no. 3, pp. 521–533, 1995. View at Google Scholar · View at Scopus
  16. D. T. Jones, “Improving the accuracy of transmembrane protein topology prediction using evolutionary information,” Bioinformatics, vol. 23, no. 5, pp. 538–544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hayat and A. Elofsson, “Boctopus: improved topology prediction of transmembrane β-barrel proteins,” Bioinformatics, vol. 28, no. 4, pp. 516–522, 2012. View at Google Scholar
  18. Y. Liu, D. M. Engelman, and M. Gerstein, “Genomic analysis of membrane protein families: abundance and conserved motifs,” Genome Biology, vol. 3, no. 10, research0054, 2002. View at Google Scholar · View at Scopus
  19. I. T. Arkin and A. T. Brunger, “Statistical analysis of predicted transmembrane alpha-helices,” Biochim Biophys Acta, vol. 1429, no. 1, pp. 113–128, 1998. View at Google Scholar
  20. A. Senes, M. Gerstein, and D. M. Engelman, “Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and association with β-branched residues at neighboring positions,” Journal of Molecular Biology, vol. 296, no. 3, pp. 921–936, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. W. P. Russ and D. M. Engelman, “The GxxxG motif: a framework for transmembrane helix-helix association,” Journal of Molecular Biology, vol. 296, no. 3, pp. 911–919, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Senes, D. E. Engel, and W. F. DeGrado, “Folding of helical membrane proteins: the role of polar, gxxxg-like and proline motifs,” Current Opinion in Structural Biology, vol. 14, no. 4, pp. 465–479, 2004. View at Google Scholar
  23. R. A. Melnyk, S. Kim, A. R. Curran, D. M. Engelman, J. U. Bowie, and C. M. Deber, “The Affinity of GXXXG Motifs in Transmembrane Helix-Helix Interactions Is Modulated by Long-range Communication,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 16591–16597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Schneider, C. Finger, A. Prodöhl, and T. Volkmer, “From interactions of single transmembrane helices to folding of α-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria,” Current Protein and Peptide Science, vol. 8, no. 1, pp. 45–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Schneider and D. M. Engelman, “Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions,” Journal of Molecular Biology, vol. 343, no. 4, pp. 799–804, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Jackups and J. Liang, “Combinatorial model for sequence and spatial motif discovery in short sequence fragments: examples from beta-barrel membrane proteins,” IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 3470–3473, 2006. View at Google Scholar · View at Scopus
  27. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The pfam protein families database,” Nucleic Acids Research, vol. 40, pp. D290–D301, 2012. View at Google Scholar
  28. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein families database,” Nucleic Acids Research Acids Res, vol. 40, pp. 290–301, 2012. View at Google Scholar
  29. W. Li and A. Godzik, “Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Google Scholar
  31. G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, “WebLogo: a sequence logo generator,” Genome Research, vol. 14, no. 6, pp. 1188–1190, 2004. View at Google Scholar
  32. E. W. Sayers et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 40, pp. 13–25, 2012. View at Google Scholar
  33. R. R. Sokal and C. D. Michener, A Statistical Method for Evaluating Systematic Relationships, vol. 38 of University of Kansas Science Bulletin, 1958.
  34. A. Wismueller, “A computational framework for nonlinear dimensionality reduction and clustering,” Lecture Notes in Computer Science, vol. 5629, pp. 334–343, 2009. View at Google Scholar
  35. D. Langosch and J. Heringa, “Interaction of transmembrane helices by a knobsinto-holes packing characteristic of soluble coiled coils,” Proteins, vol. 31, no. 2, pp. 150–159, 1998. View at Google Scholar
  36. M. C. Thomsen and M. Nielsen, “Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion,” Nucleic Acids Research, vol. 40, pp. W281–W287, 2012. View at Google Scholar
  37. L. Wilkinson and M. Friendly, “The History of the Cluster Heat Map,” 2008, www.cs.uic.edu/~wilkinson/Publications/heatmap.pdf.
  38. E. L. Sonnhammer, G. von Heijne, and A. Krogh, “A hidden markov model for predicting transmembrane helices in protein sequences,” Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 6, pp. 175–182, 1998. View at Google Scholar
  39. B. Carl and T. John, Introduction to Protein Structure, Taylor and Francis, Auflage, 2nd edition, 1998.