Research Article

In Silico Characterization and Homology Modeling of a Cyanobacterial Phosphoenolpyruvate Carboxykinase Enzyme

Table 3

Predicted consensus secondary structure content and predicted disulfide patterns of cyanobacterial PEPCs. The data was generated from the Protein Sequence Analysis server and CYS REC (http://linux1.softberry.com/berry.phtml).

Organism α- helix β-sheet Coil Disulfide bridge prediction

Cyanothece sp. PCC 8802 23.64 16.99 59.37 291–440
Cyanothece sp. PCC 7424 26.05 16.26 57.69 None
Cyanothece sp. PCC 8801 23.64 17.51 58.84 291–440
Cyanothece sp. ATCC 51142 23.55 20.21 56.24 288–437, 310–370
Microcystis aeruginosa NIES-843 26.30 16.85 56.85 None
Cyanothece sp. CCY0110 23.77 18.66 57.57 287–369, 370–432
Cyanothece sp. PCC 7822 25.82 15.20 58.99 None
Microcoleus chthonoplastes PCC 7420 24.68 17.30 58.02 None
Microcystis aeruginosa PCC 7806 25.74 15.56 58.70 None
Arthrospira platensis str. Paraca 23.56 17.98 58.46 None
Trypanosoma cruzi 22.67 22.25 55.08 8-9
E. coli K12 25.19 18.70 56.11 None
A succiniciproducens 25.56 18.23 56.20 None
C. glutamicum 31.31 15.57 53.11 90–199
Homo sapiens 26.21 16.24 57.56 192–245, 212–413, and 399–407
Rattus norvegicus 27.17 18.01 54.82 192–399, 245–307, and 407–413
Gallus gallus 27.50 17.81 54.69 11–93, 325–425, and 417–431
Thermus thermophilus HB8 25.90 19.47 54.63 None