Table of Contents
Smart Materials Research
Volume 2011, Article ID 351072, 5 pages
http://dx.doi.org/10.1155/2011/351072
Research Article

Preparation of γ-Fe2O3/Ni2O3/FeCl3(FeCl2) Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids

School of Physical Science & Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China

Received 15 December 2010; Accepted 3 May 2011

Academic Editor: Xianglong Meng

Copyright © 2011 Qingmei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R167–R181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, “Chemically prepared magnetic nanoparticles,” International Materials Reviews, vol. 49, no. 3-4, pp. 125–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Nogués, J. Sort, V. Langlais et al., “Exchange bias in nanostructures,” Physics Reports, vol. 422, no. 3, pp. 65–117, 2005. View at Publisher · View at Google Scholar
  4. D. Y. Szabó and D. Vollath, “Nanocomposites from coated nanoparticles,” Advanced Materials, vol. 11, no. 15, pp. 1313–1316, 1999. View at Google Scholar
  5. Q. Liu, Z. Xu, J. A. Finch, and R. Egerton, “A novel two-step silica-coating process for engineering magnetic nanocomposites,” Chemistry of Materials, vol. 10, no. 12, pp. 3936–3940, 1998. View at Google Scholar · View at Scopus
  6. B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chemical Reviews, vol. 104, no. 9, pp. 3893–3946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Li, Y. Lin, X. Liu et al., “The study of transition on NiFe2O4 nanoparticles prepared by co-precipitation/calcination,” Phase Transitions, vol. 84, no. 1, pp. 49–57, 2011. View at Publisher · View at Google Scholar
  8. J. Wang, “Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties,” Materials Science and Engineering B, vol. 127, no. 1, pp. 81–84, 2006. View at Publisher · View at Google Scholar
  9. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, and B. Jeyadevan, “Co-Zn ferrite nanoparticles for ferrofluid preparation: study on magnetic properties,” Physica B, vol. 363, no. 1–4, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,” Nano Letters, vol. 2, no. 3, pp. 183–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. N. Donselaar, A. P. Philipse, and J. Suurmond, “Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions,” Langmuir, vol. 13, no. 23, pp. 6018–6025, 1997. View at Google Scholar
  12. M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO coating by microwave irradiation,” Langmuir, vol. 14, no. 22, pp. 6430–6435, 1998. View at Google Scholar · View at Scopus
  13. D. Chen and R. Xu, “Hydrothermal synthesis and characterization of nanocrystallineγ-Fe2O3 particles,” Journal of Solid State Chemistry, vol. 137, no. 2, pp. 185–190, 1998. View at Publisher · View at Google Scholar
  14. F. A. Tourinho, R. Franck, and R. Massart, “Aqueous ferrofluids based on manganese and cobalt ferrites,” Journal of Materials Science, vol. 25, no. 7, pp. 3249–3254, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. P. C. Scoholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Transactions on Magnetics, vol. 16, p. 221, 1980. View at Google Scholar