Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 203625, 8 pages
http://dx.doi.org/10.1155/2012/203625
Research Article

Electromechanical and Dynamic Characterization of In-House-Fabricated Amplified Piezo Actuator

1Materials Science Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore 560017, India
2Structural Technologies Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore 560017, India

Received 21 November 2011; Accepted 27 December 2011

Academic Editor: Tao Li

Copyright © 2012 P. K. Panda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Newnham and G. R. Ruschau, “Smart electroceramics,” American Ceramic Society Bulletin, vol. 75, no. 10, pp. 51–61, 1996. View at Google Scholar · View at Scopus
  2. G. H. Haertling, “Rainbow ceramics-a new type of ultra-high-displacement actuator,” American Ceramic Society Bulletin, vol. 73, no. 1, pp. 93–98, 1994. View at Google Scholar
  3. R. E. Newnham and G. R. Ruschau, “Smart electroceramics,” Journal of the American Ceramic Society, vol. 74, no. 3, pp. 463–480, 1991. View at Google Scholar · View at Scopus
  4. E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, vol. 25, no. 10, pp. 1373–1385, 1987. View at Google Scholar · View at Scopus
  5. K. Uchino, “Advances in ceramic actuator materials,” Materials Letters, vol. 22, no. 1-2, pp. 1–4, 1995. View at Google Scholar · View at Scopus
  6. J. Juuti, K. Kordás, R. Lonnakko, V. P. Moilanen, and S. Leppävuori, “Mechanically amplified large displacement piezoelectric actuators,” Sensors and Actuators A, vol. 120, no. 1, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Niezrecki, D. Brei, S. Balakrishnan, and A. Moskalik, “Piezoelectric actuation: state of the art,” The Shock and Vibration Digest, vol. 33, no. 4, pp. 269–280, 2001. View at Google Scholar · View at Scopus
  8. A. Dogan, Q. Xu, K. Onitsuka, S. Yoshikawa, K. Uchino, and R. E. Newnham, “High displacement ceramic metal composite actuators (moonies),” Ferroelectrics, vol. 156, no. 1, pp. 1–6, 1994. View at Google Scholar · View at Scopus
  9. L. Denghua, F. Daining, W. Lina, J. Weijun, and J. Meijian, “Cymbal piezocomposites for vibration accelerometer applications,” Integrated Ferroelectrics, vol. 78, no. 1, pp. 165–171, 2006. View at Publisher · View at Google Scholar
  10. M. Joshi and S. Priya, “Piezo-bow-high displacement and high blocking force actuator,” Integrated Ferroelectrics, vol. 82, no. 1, pp. 25–43, 2006. View at Publisher · View at Google Scholar
  11. H. Zhou and B. Henson, “Analysis of a diamond-shaped mechanical amplifier for a piezo actuator,” International Journal of Advanced Manufacturing Technology, vol. 32, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Watson, J. Friend, and L. Yeo, “Piezoelectric ultrasonic micro/milli-scale actuators,” Sensors and Actuators A, vol. 152, no. 2, pp. 219–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Li, J. S. Vartuli, D. L. Milius, I. A. Aksay, W. Y. Shih, and W. H. Shih, “Electromechanical properties of a ceramic d,” Journal of the American Ceramic Society, vol. 84, no. 5, pp. 996–1003, 2001. View at Google Scholar · View at Scopus
  14. Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R. E. Newnhan, and K. Uchino, “Metal-ceramic composite actuators,” Journal of the American Ceramic Society, vol. 75, no. 4, pp. 996–998, 1992. View at Google Scholar
  15. J. F. Fernández, A. Dogan, J. T. Fielding, K. Uchino, and R. E. Newnham, “Tailoring the performance of ceramic-metal piezocomposite actuators, “cymbals”,” Sensors and Actuators A, vol. 65, no. 2-3, pp. 228–237, 1998. View at Google Scholar · View at Scopus
  16. B. Sahoo, V. A. Jaleel, and P. K. Panda, “Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators,” Materials Science and Engineering B, vol. 126, no. 1, pp. 80–85, 2006. View at Publisher · View at Google Scholar · View at Scopus