Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 356190, 6 pages
Research Article

Infra-Through Ultrasonic Piezoelectric Acoustic Vector Sensor Particle Rejection System

Aerospace Engineering Department, University of Kansas, Lawrence, KS 66045, USA

Received 15 November 2011; Accepted 16 January 2012

Academic Editor: Tao Li

Copyright © 2012 Scott E. Cravens and Ronald M. Barrett. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sensor elements which employ fine filaments are often vulnerable to particulate fouling when used in certain operational field conditions. Depending on the size, attraction level, thermal and electrical conduction, and charge accumulation properties of the particles, erroneous readings can be easily generated in such “dirty” environments. This paper describes the design, development, and testing of an ultrasonic system which dynamically rejects highly tenacious electrostatically charged particles of a wide variety of sizes and even water. The paper starts with a brief introduction to the field of acoustic vector sensing, outlining its outstanding characteristics and history. Operational challenges including a statistical analysis of typical Middle-Eastern wind-blown desert sand and charge density are laid out. Several representative subscale hot-wire filaments were fouled with calibrated dust representing desert sand. The fouled elements were then exposed to airflows of 13 ft/s (4 m/s) and showed highly erratic shifted conduction levels with respect to baseline (clean) levels. An ultrasonic cleaning system was designed specifically resonate the filament and cantilever so as to mechanically reject foulants. When operated at resonance, the ultrasonic cleaning system showed 98.6% particulate rejection levels and associated restoration of uncorrupted filament resistance levels to within 2% of baseline resistance measurements.