Table of Contents
Smart Materials Research
Volume 2012, Article ID 391026, 9 pages
http://dx.doi.org/10.1155/2012/391026
Research Article

Local Fatigue Evaluation in PZT Thin Films with Nanoparticles by Piezoresponse Force Microscopy

Material and Reliability, ASMPT, Singapore 768924

Received 28 June 2011; Accepted 22 August 2011

Academic Editor: Tao Li

Copyright © 2012 B. S. Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Scott and C. A. Paz De Araujo, “Ferroelectric memories,” Science, vol. 246, no. 4936, pp. 1400–1405, 1989. View at Google Scholar · View at Scopus
  2. G. H. Haertling, “Ferroelectric ceramics: history and technology,” Journal of the American Ceramic Society, vol. 82, no. 4, pp. 797–818, 1999. View at Google Scholar · View at Scopus
  3. M. Dawber and J. F. Scott, “A model for fatigue in ferroelectric perovskite thin films,” Applied Physics Letters, vol. 76, no. 8, pp. 1060–1062, 2000. View at Google Scholar · View at Scopus
  4. J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” Journal of Applied Physics, vol. 70, no. 1, pp. 382–388, 1991. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Scott and M. Dawber, “Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics,” Applied Physics Letters, vol. 76, no. 25, pp. 3801–3803, 2000. View at Google Scholar · View at Scopus
  6. C. H. Park and D. J. Chadi, “Microscopic study of oxygen-vacancy defects in ferroelectric perovskites,” Physical Review B, vol. 57, no. 22, pp. R13961–R13964, 1998. View at Google Scholar · View at Scopus
  7. D. C. Lupascu and U. Rabe, “Cyclic cluster growth in ferroelectric perovskites,” Physical Review Letters, vol. 89, no. 18, pp. 187601/1–187601/4, 2002. View at Google Scholar · View at Scopus
  8. A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features,” Journal of Applied Physics, vol. 90, no. 3, pp. 1387–1402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. W. L. Warren, D. Dimos, B. A. Tuttle, and D. M. Smyth, “Electronic and ionic trapping at domain walls in BaTiO3,” Journal of the American Ceramic Society, vol. 77, no. 10, pp. 2753–2757, 1994. View at Google Scholar · View at Scopus
  10. J. F. M. Cillessen, M. W. J. Prins, and R. M. Wolf, “Thickness dependence of the switching voltage in all-oxide ferroelectric thin-film capacitors prepared by pulsed laser deposition,” Journal of Applied Physics, vol. 81, no. 6, pp. 2777–2783, 1997. View at Google Scholar · View at Scopus
  11. X. Du and I. Chen, “Model experiments on fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films,” Applied Physics Letters, vol. 72, p. 1923, 1998. View at Google Scholar
  12. A. Wu, P. M. Vilarinho, I. M. Miranda Salvado, and J. L. Baptista, “Seeding studies in PZT thin films,” Materials Research Bulletin, vol. 33, no. 1, pp. 59–68, 1998. View at Google Scholar · View at Scopus
  13. A. Wu, P. M. Vilarinho, I. Reaney, and I. M. Miranda Salvado, “Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films,” Chemistry of Materials, vol. 15, no. 5, pp. 1147–1155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by Piezoresponse Force Microscopy,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin and A. Gruverman, Eds., Springer, New York, NY, USA, 2006. View at Google Scholar
  15. M. Alexe, C. Harnagea, D. Hesse, and U. Gösele, “Polarization imprint and size effects in mesoscopic ferroelectric structures,” Applied Physics Letters, vol. 79, no. 2, pp. 242–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Bühlmann, E. Colla, and P. Muralt, “Polarization reversal due to charge injection in ferroelectric films,” Physical Review B, vol. 72, no. 21, Article ID 214120, 7 pages, 2005. View at Google Scholar · View at Scopus
  17. G. Arlt, D. Hennings, and G. De With, “Dielectric properties of fine-grained barium titanate ceramics,” Journal of Applied Physics, vol. 58, no. 4, pp. 1619–1625, 1985. View at Publisher · View at Google Scholar · View at Scopus
  18. E. L. Colla, I. Stolichnov, P. E. Bradely, and N. Setter, “Direct observation of inversely polarized frozen nanodomains in fatigued ferroelectric memory capacitors,” Applied Physics Letters, vol. 82, no. 10, pp. 1604–1606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. X. H. Du, U. Belegundu, and K. Uchino, “Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films,” Japanese Journal of Applied Physics, Part 1, vol. 36, no. 9, pp. 5580–5587, 1997. View at Google Scholar · View at Scopus
  20. S. V. Kalinin, A. Gruverman, and D. A. Bonnell, “Quantitative analysis of nanoscale switching in SrBi2Ta 2O9 thin films by piezoresponse force microscopy,” Applied Physics Letters, vol. 85, no. 5, pp. 795–797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Wu, P. M. Vilarinho, V. V. Shvartsman, G. Suchaneck, and A. L. Kholkin, “Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy,” Nanotechnology, vol. 16, no. 11, pp. 2587–2595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Bouyssou, P. Leduc, G. Guégan, and R. Jérisian, “Leakage current conduction in IrO2/PZT/Pt structures,” Journal of Physics, vol. 10, no. 1, pp. 317–320, 2005. View at Publisher · View at Google Scholar
  23. X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott, “Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films,” Physical Review Letters, vol. 97, no. 17, Article ID 177601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Gruverman, O. Auciello, and H. Tokumoto, “Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films,” Applied Physics Letters, vol. 69, no. 21, pp. 3191–3193, 1996. View at Google Scholar · View at Scopus
  25. A. Gruverman, B. J. Rodriguez, R. J. Nemanich, and A. I. Kingon, “Nanoscale observation of photoinduced domain pinning and investigation of imprint behavior in ferroelectric thin films,” Journal of Applied Physics, vol. 92, no. 5, p. 2734, 2002. View at Publisher · View at Google Scholar · View at Scopus