Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 426048, 7 pages
Research Article

Epitaxial Piezoelectric Pb( ) Thin Films on Silicon for Energy Harvesting Devices

1Department of Condensed Matter Physics, (DPMC), University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
2Dipartimento di Scienze Fisiche & CNR-SPIN, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
3The Sensors, Actuators and Microsystems Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue Jaquet-Droz 1, P.O. Box 526, 2002 Neuchâtel, Switzerland
4Laboratoire de Physique des Solides, Université Paris-Sud, CNRS-UMR 8502, 91405 Orsay, France
5Department of Applied Physics, Yale University, P.O. Box 208284, New Haven, CT 06520-8284, USA

Received 20 December 2011; Accepted 27 January 2012

Academic Editor: Mohammed Es-Souni

Copyright © 2012 A. Sambri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We report on the properties of ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films grown epitaxially on (001) silicon and on the performance of such heterostructures for microfabricated piezoelectric energy harvesters. In the first part of the paper, we investigate the epitaxial stacks through transmission electron microscopy and piezoelectric force microscopy studies to characterize in detail their crystalline structure. In the second part of the paper, we present the electrical characteristics of piezoelectric cantilevers based on these epitaxial PZT films. The performance of such cantilevers as vibration energy transducers is compared with other piezoelectric harvesters and indicates the potential of the epitaxial approach in the field of energy harvesting devices.