Table of Contents
Smart Materials Research
Volume 2012, Article ID 426048, 7 pages
http://dx.doi.org/10.1155/2012/426048
Research Article

Epitaxial Piezoelectric Pb( ) Thin Films on Silicon for Energy Harvesting Devices

1Department of Condensed Matter Physics, (DPMC), University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
2Dipartimento di Scienze Fisiche & CNR-SPIN, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
3The Sensors, Actuators and Microsystems Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue Jaquet-Droz 1, P.O. Box 526, 2002 Neuchâtel, Switzerland
4Laboratoire de Physique des Solides, Université Paris-Sud, CNRS-UMR 8502, 91405 Orsay, France
5Department of Applied Physics, Yale University, P.O. Box 208284, New Haven, CT 06520-8284, USA

Received 20 December 2011; Accepted 27 January 2012

Academic Editor: Mohammed Es-Souni

Copyright © 2012 A. Sambri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Reviews of Modern Physics, vol. 77, no. 4, pp. 1083–1130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Haeni, P. Irvin, W. Chang et al., “Room-temperature ferroelectricity in strained SrTiO3,” Nature, vol. 430, no. 7001, pp. 758–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. J. Choi, M. Biegalski, Y. L. Li et al., “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science, vol. 306, no. 5698, pp. 1005–1009, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Zubko, N. Stucki, C. Lichtensteiger, and J. M. Triscone, “X-ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field,” Physical Review Letters, vol. 104, no. 18, Article ID 187601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Setter, D. Damjanovic, L. Eng et al., “Ferroelectric thin films: Review of materials, properties, and applications,” Journal of Applied Physics, vol. 100, no. 10, Article ID 109901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Revesz, J. Li, N. Szabo Jr., W. Mayer, D. Caudillo, and E. R. Myers, “PZT interaction with metals and oxides studied by RBS,” Materials Research Society Symposium Proceedings, vol. 243, pp. 101–106, 1991. View at Google Scholar
  7. R. A. McKee, F. J. Walker, and M. F. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Physical Review Letters, vol. 81, no. 14, pp. 3014–3017, 1998. View at Google Scholar · View at Scopus
  8. J. W. Reiner, A. M. Kolpak, Y. Segal et al., “Crystalline oxides on silicon,” Advanced Materials, vol. 22, no. 26–27, pp. 2919–2938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Yu, Y. Liang, C. Overgaard et al., “Advances in heteroepitaxy of oxides on silicon,” Thin Solid Films, vol. 462-463, pp. 51–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, UK, 1971.
  11. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Physical Review Letters, vol. 80, no. 9, pp. 1988–1991, 1998. View at Google Scholar · View at Scopus
  12. D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J. M. Triscone, “Strain tuning of ferroelectric thin films,” Annual Review of Materials Research, vol. 37, pp. 589–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Sambri, S. Gariglio, A. Torres Pardo et al., “Enhanced critical temperature in epitaxial ferroelectric Pb (Zr0.2Ti0.8) O3 thin films on silicon,” Applied Physics Letters, vol. 98, no. 1, Article ID 012903, 3 pages, 2011. View at Publisher · View at Google Scholar
  14. D. S. Shin, S. T. Park, H. S. Choi, I. H. Choi, and J. Y. Lee, “Characteristics of Pt/SrTiO3/Pb(Zr0.52, Ti0.48)O3/SrTiO3/Si ferroelectric gate oxide structure,” Thin Solid Films, vol. 354, no. 1, pp. 251–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. Ø. Nordseth, C. C. You, E. Folven et al., “Growth and characterization of (Pb,La)(Zr,Ti)O3 thin film epilayers on SrTiO3-buffered Si(001),” Thin Solid Films, vol. 518, no. 19, pp. 5471–5477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Tokumitsu, K. Itani, B. K. Moon, and H. Ishiwara, “Crystalline quality and electrical properties of PbZrxTi1-xO3 thin films prepared on SrTiO3-covered Si substrates,” Japanese Journal of Applied Physics, vol. 34, no. 9, pp. 5202–5206, 1995. View at Google Scholar · View at Scopus
  17. J. W. Reiner, K. F. Garrity, F. J. Walker, S. Ismail-Beigi, and C. H. Ahn, “Role of strontium in oxide epitaxy on silicon (001),” Physical Review Letters, vol. 101, no. 10, Article ID 105503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lettieri, J. H. Haeni, and D. G. Schlom, “Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon,” Journal of Vacuum Science and Technology A, vol. 20, no. 4, pp. 1332–1340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Isarakorn, A. Sambri, P. Janphuang et al., “Epitaxial piezoelectric MEMS on silicon,” Journal of Micromechanics and Microengineering, vol. 20, no. 5, Article ID 055008, 2010. View at Publisher · View at Google Scholar
  20. G. J. Norga, C. Marchiori, C. Rossel et al., “Solid phase epitaxy of SrTi O3 on (Ba,Sr)O/Si(100): the relationship between oxygen stoichiometry and interface stability,” Journal of Applied Physics, vol. 99, no. 8, Article ID 084102, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. V. Goncharova, D. G. Starodub, E. Garfunkel et al., “Interface structure and thermal stability of epitaxial SrTiO3 thin films on Si(001),” Journal of Applied Physics, vol. 100, no. 1, Article ID 014912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Shutthanandan, S. Thevuthasan, Y. Liang, E. M. Adams, Z. Yu, and R. Droopad, “Direct observation of atomic disordering at the SrTiO3/Si interface due to oxygen diffusion,” Applied Physics Letters, vol. 80, no. 10, Article ID 1803, 3 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Speck and W. Pompe, “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory,” Journal of Applied Physics, vol. 76, no. 1, pp. 466–476, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm, L. A. Boatner, and B. J. Wilkens, “Domain formation and strain relaxation in epitaxial ferroelectric heterostructures,” Physical Review B, vol. 49, no. 21, pp. 14865–14879, 1994. View at Publisher · View at Google Scholar
  25. S. V. Kalinin, B. J. Rodriguez, S. Jesse et al., “Vector piezoresponse force microscopy,” Microscopy and Microanalysis, vol. 12, no. 3, pp. 206–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Ma, F. Zavaliche, L. Chen et al., “Effect of 90 domain movement on the piezoelectric response of patterned PbZr0.2 Ti0.8O3/SrTiO3 Si heterostructures,” Applied Physics Letters, vol. 87, no. 7, Article ID 072907, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Bassiri-Gharb, I. Fujii, E. Hong, S. Trolier-Mckinstry, D. V. Taylor, and D. Damjanovic, “Domain wall contributions to the properties of piezoelectric thin films,” Journal of Electroceramics, vol. 19, no. 1, pp. 47–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Le Rhun, I. Vrejoiu, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, “Increased ferroelastic domain mobility in ferroelectric thin films and its use in nano-patterned capacitors,” Nanotechnology, vol. 17, no. 13, article 013, pp. 3154–3159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Nagarajan, A. Roytburd, A. Stanishevsky et al., “Dynamics of ferroelastic domains in ferroelectric thin films,” Nature Materials, vol. 2, no. 1, pp. 43–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. R. J. Zednik, A. Varatharajan, M. Oliver, N. Valanoor, and P. C. McIntyre, “Mobile ferroelastic domain walls in nanocrystalline PZT films: the direct piezoelectric effect,” Advanced Functional Materials, vol. 21, no. 16, pp. 3104–3110, 2011. View at Publisher · View at Google Scholar
  31. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, “Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films,” Advanced Materials, vol. 18, no. 13, pp. 1657–1661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. L. J. Klein, C. Dubourdieu, M. M. Frank, J. Hoffman, J. W. Reiner, and C. H. Ahn, “Domain dynamics in epitaxial Pb (Zr0.2Ti0.8)O3 films studied by piezoelectric force microscopy,” Journal of Vacuum Science and Technology B, vol. 28, no. 4, article C5A20, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Morioka, K. Saito, H. Nakaki, R. Ikariyama, T. Kurosawa, and H. Funakubo, “Impact of 90-domain wall motion in Pb(Zr0.43Ti0.57)O3 film on the ferroelectricity induced by an applied electric field,” Applied Physics Express, vol. 2, no. 4, Article ID 041401, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications,” Measurement Science and Technology, vol. 17, no. 12, pp. R175–R195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Mitcheson, E. K. Reilly, T. Toh, P. K. Wright, E. M. Yeatman, and J. Micromech, “Performance limits of the three MEMS inertial energy generator transduction types,” Journal of Micromechanics and Microengineering, vol. 17, supplement 9, pp. S211–S216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006),” Smart Materials and Structures, vol. 16, no. 3, article R01, pp. R1–R21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Materials and Structures, vol. 13, no. 5, pp. 1131–1142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, “Piezoelectric thin films for sensors, actuators, and energy harvesting,” MRS Bulletin, vol. 34, no. 9, pp. 658–664, 2009. View at Google Scholar · View at Scopus
  39. E. K. Reilly and P. K. Wright, “Modeling, fabrication and stress compensation of an epitaxial thin film piezoelectric microscale energy scavenging device,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, Article ID 095014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Harigai, H. Adachi, and E. Fujii, “Vibration energy harvesting using highly (001)-oriented Pb(Zr,Ti)O3 thin film,” Journal of Applied Physics, vol. 107, no. 9, Article ID 096101, 3 pages, 2010. View at Google Scholar
  41. D. Isarakorn, D. Briand, P. Janphuang et al., “The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film,” Smart Materials and Structures, vol. 20, no. 2, Article ID 025015, 2011. View at Publisher · View at Google Scholar
  42. R. Elfrink, T. M. Kamel, M. Goedbloed et al., “Vibration energy harvesting with aluminum nitride-based piezoelectric devices,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, Article ID 094005, 2009. View at Publisher · View at Google Scholar
  43. Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, “MEMS power generator with transverse mode thin film PZT,” Sensors and Actuators, A, vol. 122, no. 1, pp. 16–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, “Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film,” Journal of Micromechanics and Microengineering, vol. 19, no. 6, Article ID 065014, 2009. View at Publisher · View at Google Scholar
  45. H.-B. Fang, J.-Q. Liu, Z.-Y. Xu et al., “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectronics Journal, vol. 37, no. 11, pp. 1280–1284, 2006. View at Publisher · View at Google Scholar
  46. D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle III, and D. J. Kim, “The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,” Journal of Micromechanics and Microengineering, vol. 18, no. 5, Article ID 055017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Muralt, “Piezoelectric thin film for MEMS,” Integrated Ferroelectrics, vol. 17, no. 1, pp. 297–307, 1997. View at Google Scholar
  48. S. Trolier-Mckinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” Journal of Electroceramics, vol. 12, no. 1-2, pp. 7–17, 2004. View at Publisher · View at Google Scholar · View at Scopus