Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 513271, 12 pages
http://dx.doi.org/10.1155/2012/513271
Research Article

Finite Element Analysis and Vibration Control of a Deep Composite Cylindrical Shell Using MFC Actuators

1Mechanical Engineering Department, PVP Siddhartha Institute of Technology, Kanuru, Vijayawada 520007, Andhra Pradesh, India
2Structural Technologies Division, National Aerospace Laboratories, Bangalore 560017, India

Received 29 November 2011; Revised 25 January 2012; Accepted 3 February 2012

Academic Editor: Osama J. Aldraihem

Copyright © 2012 Gangolu Vijay Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Bevan, “Piezoceramic actuator placement for acoustic control of panels,” NASA/CR-2001-211265, 2001.
  2. A. Kovalovs, E. Barkanov, and S. Gluhihs, “Active control of structures using macro-fiber composite (MFC),” Journal of Physics: Conference Series, vol. 93, no. 1, Article ID 012034, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Ro, C. C. Chien, T. Y. Wei, and S. J. Sun, “Flexural vibration control of the circular handlebars of a bicycle by using MFC actuators,” Journal of Vibration and Control, vol. 13, no. 7, pp. 969–987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Varadarajan, K. Chandrashekara, and S. Agarwal, “Adaptive shape control of laminated composite plates using piezoelectric materials,” AIAA Journal, pp. 197–205, 1996. View at Google Scholar
  5. A. Benjeddou, M. A. Trindade, and R. Ohayon, “A unified beam finite element model for extension and shear piezoelectric actuation mechanisms,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 12, pp. 1012–1025, 1997. View at Google Scholar · View at Scopus
  6. D. A. Saravanos, “Mixed laminate theory and finite element for smart piezoelectric composite shell structures,” AIAA Journal, vol. 35, no. 8, pp. 1327–1333, 1997. View at Google Scholar · View at Scopus
  7. S. Raja, T. Ikeda, and D. Dwarakanathan, “Deflection and vibration control of laminated plates using extension and shear actuated fiber composites,” Smart Materials Research, vol. 2011, Article ID 515942, 15 pages, 2011. View at Publisher · View at Google Scholar
  8. J. N. Reddy, “Exact solutions of moderately thick laminated shells,” Journal of Engineering Mechanics, vol. 110, no. 5, pp. 794–809, 1984. View at Google Scholar · View at Scopus
  9. V. Balamurugan and S. Narayanan, “Active vibration control of smart shells using distributed piezoelectric sensors and actuators,” Smart Materials and Structures, vol. 10, no. 2, pp. 173–180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. B. Xu and S. Gangbing, “Active vibration control of cylindrical shell using smart materials,” in Smart Structures and Materials: Smart Structures and Integrated Systems, vol. 4701 of Proceedings of SPIE, p. 518, San Diego, Calif, USA, 2002. View at Publisher · View at Google Scholar
  11. S. P. Singh, H. S. Pruthi, and V. P. Agarwal, “Efficient modal control strategies for active control of vibrations,” Journal of Sound and Vibration, vol. 262, no. 3, pp. 563–575, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Clark and C. R. Fuller, “Active control of structurally radiated sound from an enclosed finite cylinder,” in Proceedings of the Conference on Recent Advances in Active Control of Sound and Vibration, pp. 380–402, Virginia Polytechnic Institute and State University, Blacksburg, Va, USA, 1991.
  13. V. R. Sonti and J. D. Jones, “Dynamic effects of piezoactuators on the cylindrical shell response,” AIAA Journal, vol. 34, no. 4, pp. 795–801, 1996. View at Google Scholar · View at Scopus
  14. M. Bernadou and C. Haenel, “Modelization and numerical approximation of piezoelectric thin shells Part II: approximation by finite element methods and numerical experiments,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 37-38, pp. 4045–4073, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Kwak, S. Heo, and M. Jeong, “Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators,” Journal of Sound and Vibration, vol. 321, no. 3-5, pp. 510–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Roy and D. Chakraborty, “Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm,” Journal of Sound and Vibration, vol. 319, no. 1-2, pp. 15–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Sohn and S.-B. Choi, “Optimal placements of MFC actuators for vibration control of cylindrical shell structure,” Advances in Science and Technology, vol. 56, pp. 253–258, 2008. View at Google Scholar
  18. M. S. Azzouz, C. Mei, J. S. Bevan, and R. J. Jong, “Finite element modeling of MFC/AFC actuators and performance of MFC,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 9, pp. 601–612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. E. J. Ruggiero, G. Park, and D. J. Inman, “Multi-input multi-output vibration testing of an inflatable torus,” Mechanical Systems and Signal Processing, vol. 18, no. 5, pp. 1187–1201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. P. Naganarayana and G. Prathap, “Force and moment corrections for the warped four-node quadrilateral plane shell element,” Computers and Structures, vol. 33, no. 4, pp. 1107–1115, 1989. View at Google Scholar · View at Scopus