Table of Contents
Smart Materials Research
Volume 2012, Article ID 853481, 13 pages
http://dx.doi.org/10.1155/2012/853481
Review Article

Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors

1Department of Physics, Midlands State University, P/Bag 9055, Gweru, Zimbabwe
2Department of Physics, University of Botswana, P/Bag 0022, Gaborone, Botswana

Received 14 December 2011; Revised 27 February 2012; Accepted 5 March 2012

Academic Editor: Mickaël Lallart

Copyright © 2012 Action Nechibvute et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 669–676, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, no. 11, pp. 1131–1144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered sensor networks,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN '05), pp. 463–468, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Christin, P. S. Mogre, and M. Hollick, “Survey on wireless sensor network technologies for industrial automation: the security and quality of service perspectives,” Future Internet, vol. 2, no. 2, pp. 96–125, 2010. View at Google Scholar
  5. J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed collaborative control for industrial automation with wireless sensor and actuator networks,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4219–4230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss, “Energy harvesting for structural health monitoring sensor networks,” Journal of Infrastructure Systems, vol. 14, no. 1, pp. 64–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh, “Wireless sensor networks for healthcare,” Proceedings of the IEEE, vol. 98, no. 11, pp. 1947–1960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. R. Garcia, L. Lunadei , P. Barreiro , and J. I. Robla, “A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends,” Sensors, vol. 9, no. 6, pp. 4728–4750, 2009. View at Google Scholar
  9. W. H. Liao, D. H. Wang, and S. L. Huang, “Wireless monitoring of cable tension of cable-stayed bridges using PVDF piezoelectric films,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 5, pp. 331–339, 2001. View at Google Scholar · View at Scopus
  10. L. Chalard, D. Helal, L Verbaere, A. Wellig, and J. Zory, “Wireless sensor networks devices: overview, issues, state-of-the-art and promising technologies,” ST Journal of Research, vol. 4, no. 1, pp. 4–8, 2007. View at Google Scholar
  11. F. G. Carlos, H. I. Pablo, G. H. Joaquin., and A. P. Jesus, “Wireless sensor networks and applications: a survey,” International Journal of Computer Science and Network Security, vol. 7, no. 3, 2007. View at Google Scholar
  12. P. X. Gao, J. Song, J. Liu, and Z. L. Wang, “Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices,” Advanced Materials, vol. 19, no. 1, pp. 67–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Sun, J. Shi, and X. Wang, “Fundamental study of mechanical energy harvesting using piezoelectric nanostructures,” Journal of Applied Physics, vol. 108, no. 3, Article ID 034309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware wireless microsensor networks,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 40–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Application Note 43, Maxim Corporation, “12-Bit Sampling A/D converter conserves power, July,” 1998, http://notes-application.abcelectronique.com/003/3-3801.pdf. View at Google Scholar
  16. C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “Energy management in wireless sensor networks with energy-hungry sensors,” IEEE Instrumentation and Measurement Magazine, vol. 12, no. 2, pp. 16–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. O. Mathúna, T. O'Donnell, R. V. Martinez-Catala, J. Rohan, and B. O'Flynn, “Energy scavenging for long-term deployable wireless sensor networks,” Talanta, vol. 75, no. 3, pp. 613–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Gutnik and A. P. Chandrakasan, “Embedded power supply for low-power DSP,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 4, pp. 425–435, 1997. View at Google Scholar · View at Scopus
  19. C. Schurgers, V. Ragunathan, and M. Srivastava, “Power management for energy-aware communication systems,” ACM Transactions on Embedded Computing Systems, vol. 2, no. 3, pp. 431–447, 2003. View at Google Scholar
  20. Chipcon Products from Texas Instruments, “CC2240/2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver data sheet,” 2012, http://www.ti.com/lit/ds/symlink/cc2420.pdf. View at Google Scholar
  21. J. M. Gilbert and F. Balouchi, “Comparison of energy harvesting systems for wireless sensor networks,” International Journal of Automation and Computing, vol. 5, no. 4, pp. 334–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Correal and N. Patwari, “Wireless sensor networks: challenges and. opportunities,” in Proceedings of the MPRG/Virgina Tech Wireless Symposium on Wire-less Personal Communication, pp. 1–9, Blacksburg, Va, USA, 2001.
  23. T. E. Starner, “Powerful change part 1: batteries and possible alternatives for the mobile market,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 86–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Hahn and H. Reichl, “Batteries and power supplies for wearable and ubiquitous computing,” in Proceedings of the 3rd International Symposium on Wearable Computers, pp. 168–169, San Francisco, Calif, USA, October 1999. View at Scopus
  25. A. Valenzuela, “Batteryless energy harvesting for embedded designs,” 2009, http://www.embedded.com/218600144. View at Google Scholar
  26. S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003-2006),” Smart Materials and Structures, vol. 16, no. 3, article R01, pp. R1–R21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. A. Sodano, D. J. Inman, and G. Park, “Generation and storage of electricity from power harvesting devices,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 1, pp. 67–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, “Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems,” Smart Materials and Structures, vol. 17, no. 4, Article ID 043001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, and C. Richard, “Materials, structures and power interfaces for efficient piezoelectric energy harvesting,” Journal of Electroceramics, vol. 22, no. 1–3, pp. 171–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 243–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Zhu, R. Yang, S. Wang, and Z. L. Wang, “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Letters, vol. 10, no. 8, pp. 3151–3155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Choi, M. Y. Choi, W. M. Choi et al., “Fully rollable transparent nanogenerators based on graphene electrodes,” Advanced Materials, vol. 22, no. 19, pp. 2187–2192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, “Controlled growth of semiconducting nanowire, nanoball, and hybrid nanostructures on grapheme for piezoelectric nanogenerators,” ACS Nano, vol. 5, no. 5, 2011. View at Google Scholar
  34. Z. L. Wang, “Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS,” in Proceedings of the 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '11), pp. 115–120, Cancum, Mexico, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. T. Huang, J. Song, C. M. Tsai et al., “Single-InN-nanowire nanogenerator with upto 1 v output voltage,” Advanced Materials, vol. 22, no. 36, pp. 4008–4013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. T. Huang, J. Song, W. F. Lee et al., “GaN nanowire arrays for high-output nanogenerators,” Journal of the American Chemical Society, vol. 132, no. 13, pp. 4766–4771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang, “ZnO#ZnS heterojunction and ZnS nanowire arrays for electricity generation,” ACS Nano, vol. 3, no. 2, pp. 357–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, vol. 10, no. 2, pp. 726–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Wang, J. Hu, A. P. Suryavanshi, K. Yum, and M.-F. Yu, “Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load,” Nano Letters, vol. 7, no. 10, pp. 2966–2969, 2007. View at Google Scholar
  40. S. Xu, B. J. Hansen, and Z. L. Wang, “Piezoelectric-nanowire-enabled power source for driving wireless microelectronics,” Nature Communications, vol. 1, no. 7, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Bogue, “Energy harvesting and wireless sensors: a review of recent developments,” Sensor Review, vol. 29, no. 3, pp. 194–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Kumar and S.-W. Kim, “Recent advances in power generation through piezoelectric nanogenerators,” Journal of Materials Chemistry, vol. 21, pp. 18946–18958, 2011. View at Google Scholar
  43. S. Xu, Oxide nanowire arrays for energy sciences, Ph.D. thesis, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Ga, USA, 2010.
  44. Z. L. Wang, “Towards self-powered nanosystems: from nanogenerators to nanopiezotronics,” Advanced Functional Materials, vol. 18, no. 22, pp. 3553–3567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Gao and Z. L. Wang, “Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics,” Nano Letters, vol. 7, no. 8, pp. 2499–2505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. X. D. Wang, “Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale,” Nano Energy, vol. 1, no. 1, pp. 13–24, 2012. View at Google Scholar
  47. X. Chen, S. Xu, N. Yao, and Y. Shi, “1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, vol. 10, no. 6, pp. 2133–2137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Guyomar and M. Lallart, “Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation,” Micromachines Journal, vol. 2, no. 2, pp. 274–294, 2011. View at Google Scholar
  49. Y. K. Tan and S. K. Panda, “Review of energy harvesting technologies for sustainable wireless sensor network in sustainable wireless sensor networks,” http://cdn.intechopen.com/pdfs/12418/InTech-Review_of_energy_harvesting_technologies_for_sustainable_wsn.pdf.
  50. L. Bierl, Texas Instruments, MSP430 Family Mixed Signal Microcontroller Application Reports, Literature Number SLAA024, January 2000, http://www.ti.com/lit/an/slaa024/slaa024.pdf.
  51. C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Adaptive power management for environmentally powered systems,” IEEE Transactions on Computers, vol. 59, no. 4, pp. 478–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. C. M. Vigorito, D. Ganesan, and A. G. Barto, “Adaptive control of duty cycling in energy harvesting wireless sensor networks,” in Proceedings of the 4th Annual IEEE Communications Society conference on Sensor, Mesh and Ad Hoc Communication and Networks (SECON '07), pp. 21–30, San Diego, Calif, USA, June 2007.
  53. J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan, “Adaptive duty cycling for energy harvesting systems,” in Proceedings of the 11th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED '06), pp. 180–185, Tegernsee, Germany, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, “Harvesting aware power management for sensor networks,” in Proceedings of the 43rd ACM/IEEE Design Automation Conference, pp. 651–656, San Francisco, Calif, USA, September 2006.
  55. T. Pering, T. Burd, and R. Brodersen, “Dyanamic voltage scaling and the design of a low-microprocessor system,” in Proceedings of the Proceedings of Power Driven Micro Architecture Workshop, in Conjunction with International Symposium on Computer Architecture, pp. 107–112, Barcelona, Spain, June 1998.
  56. A. Sinha and A. Chandrakasan, “Dynamic power management in wireless sensor networks,” IEEE Design and Test of Computers, vol. 18, no. 2, pp. 62–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. R. J. M. Vullers, R. van Schaijk, I. Doms, C. van Hoof, and R. Mertens, “Micropower energy harvesting,” Solid-State Electronics, vol. 53, no. 7, pp. 684–693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Zhu, S. Mekid, and R. Pietruzkiewics, “Architecture investigation of energy harvester for wireless sensor nodes,” in Proceedings of the 5th Virtual International Conference on Intelligent Production Machines and Systems, Elsevier, Oxford, UK, 2008. View at Google Scholar
  59. http://www.tecnologico.deusto.es/projects/smartmotes/files/D2.1_SmartMotes_WSN_ComparativeAnalysis_v1.8.pdf.
  60. Jennic Ltd, “JN5139 Wireless Microcontroller (IEEE 802.15.4 and ZigBee),” 2010, http://www.jennic.com/products. View at Google Scholar
  61. S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Materials and Structures, vol. 13, pp. 1131–1142, 2004. View at Google Scholar
  62. X. Wang, J. Song, J. Liu, and L. W. Zhong, “Direct-current nanogenerator driven by ultrasonic waves,” Science, vol. 316, no. 5821, pp. 102–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Song, J. Zhou, and Z. L. Wang, “Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire: a technology for harvesting electricity from the environment,” Nano Letters, vol. 6, no. 8, pp. 1656–1662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Yang, Y. Qin, L. Dai, and Z. L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology, vol. 4, no. 1, pp. 34–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Xu, Y. Wei, J. Liu, R. Yang, and Z. L. Wang, “Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes,” Nano Letters, vol. 8, no. 11, pp. 4027–4032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Yang, Y. Qin, C. Li, L. Dai, and Z. L. Wang, “Characteristics of output voltage and current of integrated nanogenerators,” Applied Physics Letters, vol. 94, no. 2, Article ID 022905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, “Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator,” Nano Letters, vol. 9, no. 3, pp. 1201–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Schmitz, T. Sterken, M. Renaud, P. Fiorini, R. Puers, and C. van Hoof, “Piezoelectric scavengers in MEMS technology fabrication and simulation,” in Proceedings of the 5th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS '05), pp. 61–64, Tokyo, Japan, November 2005.
  69. W. J. Choi, Y. Jeon, J. H. Jeong, R. Sood, and S. G. Kim, “Energy harvesting MEMS device based on thin film piezoelectric cantilevers,” Journal of Electroceramics, vol. 17, no. 2–4, pp. 543–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. B. S. Lee, W. J. Wu, W. P. Shih, D. Vasic, and F. Costa, “Power harvesting using piezoelectric MEMS generator with interdigital electrodes,” in Proceedings of the IEEE Ultrasonics Symposium (IUS '07), pp. 1598–1601, New York, NY, USA, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Renaud, T. Sternen, A. Schmitz, p. Fiorini, C. van Hoof, and R. Puers, “Piezoelectric harvesters and MEMS technology: fabrication, modeling and measurements,” in Proceedings of the IEEE Transducers International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 891–894, September 2007, Lyon, France.
  72. J. Q. Liu, H. B. Fang, Z. Y. Xu et al., “A MEMS-based piezoelectric power generator array for vibration energy harvesting,” Microelectronics Journal, vol. 39, no. 5, pp. 802–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. L. Kok, N. M. White, and N. R. Harris, “A free-standing, thick-film piezoelectric energy harvester,” in Proceedings of the IEEE Sensors Conference (SENSORS '08), pp. 589–592, Lecce, Italy, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. S. J. Jeong, M. S. Kim, J. S. Song, and H. K. Lee, “Two-layered piezoelectric bender device for micro-power generator,” Sensors and Actuators A, vol. 148, no. 1, pp. 158–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Kim, V. Bedekar, R. A. Islam, W. H. Lee, D. Leo, and S. Priya, “Laser-machined piezoelectric cantilevers for mechanical energy harvesting,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 9, pp. 1900–1905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Shen, J. H. Park, J. H. Noh et al., “Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting,” Sensors and Actuators A, vol. 154, no. 1, pp. 103–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. C. Park, D. H. Lee, J. K. Park, Y. S. Chang, and Y. P. Lee, “High performance piezoelectric MEMS energy harvester based on d33 mode of PZT thin film on buffer with PbTiO3 inter-layer,” in Proceedings of the IEEE Transducers 15th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 517–520, Denver, Colo, USA, June 2009.
  78. R. Elfrink, T. M. Kamel, M. Goedbloed et al., “Vibration energy harvesting with aluminum nitride-based piezoelectric devices,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, Article ID 094005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. K. I. Park, S. Xu, Y. Liu et al., “Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates,” Nano Letters, vol. 10, no. 12, pp. 4939–4943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nature Nanotechnology, vol. 5, no. 5, pp. 366–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, “High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display,” Nano Letters, vol. 10, no. 12, pp. 5025–5031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. Li and Z. L. Wang, “Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor,” Advanced Materials, vol. 23, no. 1, pp. 84–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, “Self-powered system with wireless data transmission,” Nano Letters, vol. 11, no. 6, pp. 2572–2577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. M. B. Lee, J. H. Bae, J. Y. Lee, C. S. Lee, S. H. Hong, and Z. L. Wang, “Self-powered environmental sensor system driven by nanogenerators,” Energy and Environmental Science, vol. 4, pp. 3359–3363, 2011. View at Google Scholar
  85. Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, “Replacing battery by a nanogenerator with 20 V output,” Advanced Materials, vol. 24, pp. 110–114, 2012. View at Google Scholar