Table of Contents
Smart Materials Research
Volume 2013 (2013), Article ID 271546, 12 pages
http://dx.doi.org/10.1155/2013/271546
Research Article

Self-Healing of Ionomeric Polymers with Carbon Fibers from Medium-Velocity Impact and Resistive Heating

1Mechanical Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
2Center for Intelligent Materials Systems and Structures, Virginia Tech, Blacksburg, VA 24061, USA

Received 2 October 2012; Revised 24 March 2013; Accepted 27 March 2013

Academic Editor: Yanjun Zheng

Copyright © 2013 Vishnu Baba Sundaresan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. N. Brown, N. R. Sottos, and S. R. White, “Fracture testing of a self-healing polymer composite,” Experimental Mechanics, vol. 42, no. 4, pp. 372–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Rule, N. R. Sottos, and S. R. White, “Effect of microcapsule size on the performance of self-healing polymers,” Polymer, vol. 48, no. 12, pp. 3520–3529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. J. Blaiszik, N. R. Sottos, and S. R. White, “Nanocapsules for self-healing materials,” Composites Science and Technology, vol. 68, no. 3-4, pp. 978–986, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Andersson, M. Keller, J. Moore, N. Sottos, and S. White, Self Healing Polymers and Composites, Vol. 100 of Springer Series in Materials Science, Springer, Amsterdam, The Netherlands, 2008.
  5. R. S. Trask, H. R. Williams, and I. P. Bond, “Self-healing polymer composites: mimicking nature to enhance performance,” Bioinspiration and Biomimetics, vol. 2, no. 1, pp. P1–P9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. R. Williams, R. S. Trask, A. C. Knights, E. R. Williams, and I. P. Bond, “Biomimetic reliability strategies for self-healing vascular networks in engineering materials,” Journal of the Royal Society Interface, vol. 5, no. 24, pp. 735–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. R. Williams, R. S. Trask, P. M. Weaver, and I. P. Bond, “Minimum mass vascular networks in multifunctional materials,” Journal of the Royal Society Interface, vol. 5, no. 18, pp. 55–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, “Self-healing materials with microvascular networks,” Nature Materials, vol. 6, no. 8, pp. 581–585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. R. Williams, R. S. Trask, and I. P. Bond, “Self-healing composite sandwich structures,” Smart Materials and Structures, vol. 16, no. 4, pp. 1198–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Aragón, J. K. Wayer, P. H. Geubelle, D. E. Goldberg, and S. R. White, “Design of microvascular flow networks using multi-objective genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 49-50, pp. 4399–4410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Norris, J. A. P. White, G. McCombe, P. Chatterjee, I. P. Bond, and R. S. Trask, “Autonomous stimulus triggered self-healing in smart structural composites,” Smart Materials and Structures, vol. 21, no. 9, Article ID 094027, 2012. View at Publisher · View at Google Scholar
  12. T. Yang, C. Wang, J. Zhang, S. He, A. Mouritz, and \, “Toughening and self-healing of epoxy ma- trix laminates using mendable polymer stitching,” Composites Science and Technology, vol. 72, no. 12, pp. 1396–1401, 2012. View at Publisher · View at Google Scholar
  13. V. Privman, A. Dementsov, and I. Sokolov, “Modeling of self-healing polymer composites reinforced with nanoporous glass fibers,” Journal of Computational and Theoretical Nanoscience, vol. 4, no. 1, pp. 190–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Trask, G. J. Williams, and I. P. Bond, “Bioinspired self-healing of advanced composite structures using hollow glass fibres,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 363–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Kousourakis and A. P. Mouritz, “The effect of self-healing hollow bres on the mechanical properties of polymer composites,” Smart Materials and Structures, vol. 19, no. 8, Article ID 085021, 2010. View at Google Scholar
  16. T. Yin, M. Z. Rong, J. Wu, H. Chen, and M. Q. Zhang, “Healing of impact damage in woven glass fabric reinforced epoxy composites,” Composites A, vol. 39, no. 9, pp. 1479–1487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Moll, S. R. White, and N. R. Sottos, “A self-sealing fiber-reinforced composite,” Journal of Composite Materials, vol. 44, no. 22, pp. 2573–2585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Chen, F. Wudl, A. K. Mal, H. Shen, and S. R. Nutt, “New thermally remendable highly cross-linked polymeric materials,” Macromolecules, vol. 36, no. 6, pp. 1802–1807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Kwok and H. T. Hahn, “Resistance heating for self-healing composites,” Journal of Composite Materials, vol. 41, no. 13, pp. 1635–1654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Park, K. Takahashi, Z. Guo et al., “Towards development of a self-healing composite using a mendable polymer and resistive heating,” Journal of Composite Materials, vol. 42, no. 26, pp. 2869–2881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Kalista, Self-Healing of thermoplastic poly(Ethylene-Co-Methacrylic Acid) copolymers following projectile puncture [Ph.D. thesis], Virginia Polytechnic Institute and State University, Burruss Hall, Va, USA, 2003.
  22. S. J. Kalista and T. C. Ward, “Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 405–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. Varley and S. Van der Zwaag, “Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions,” Polymer Testing, vol. 27, no. 1, pp. 11–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Varley and S. van der Zwaag, “Autonomous damage initiated healing in a thermo-responsive ionomer,” Polymer International, vol. 59, no. 8, pp. 1031–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Pingkarawat, C. Wang, R. Varley, and A. Mouritz, “Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Composites A, vol. 50, pp. 20–30, 2013. View at Google Scholar
  26. C. C. Owen, Magnetic induction for in-situ healing of polymeric material [M.S. thesis], Virginia Polytechnic Institute and State University, Burruss Hall, Va, USA, 2006.
  27. D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: a review of recent developments,” Progress in Polymer Science, vol. 33, no. 5, pp. 479–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Carlson, J. M. English, and D. J. Coe, “A flexible, self-healing sensor skin,” Smart Materials and Structures, vol. 15, no. 5, pp. N129–N135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Patel, N. R. Sottos, E. D. Wetzel, and S. R. White, “Autonomic healing of low-velocity impact damage in fiber-reinforced composites,” Composites A, vol. 41, no. 3, pp. 360–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Swait, A. Rauf, R. Grainger et al., “Smart composite materials for self-sensing and self-healing,” Plastics, Rubber and Composites, vol. 41, no. 4-5, pp. 215–224, 2012. View at Publisher · View at Google Scholar
  31. K. Hargou, K. Pingkarawat, A. Mouritz, and C. Wang, “Ultrasonic activation of mend- able polymer for self-healing carbonepoxy laminates,” Composites B, vol. 45, no. 1, pp. 1031–1039, 2013. View at Publisher · View at Google Scholar
  32. B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, “Self-healing polymers and composites,” Annual Review of Materials Research, vol. 40, pp. 179–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Stavnes and A. Hammoud, “Assessment of safety in space power wiring systems,” IEEE Aerospace and Electronic Systems Magazine, vol. 9, no. 1, pp. 21–27, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Balazs, “Modeling self-healing materials,” Materials Today, vol. 10, no. 9, pp. 18–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Dementsov and V. Privman, “Percolation modeling of conductance of self-healing composites,” Physica A, vol. 385, no. 2, pp. 543–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Maiti, C. Shankar, P. H. Geubelle, and J. Kieffer, “Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers,” Journal of Engineering Materials and Technology, vol. 128, no. 4, pp. 595–602, 2006. View at Publisher · View at Google Scholar · View at Scopus