Table of Contents
Smart Materials Research
Volume 2013, Article ID 410567, 7 pages
http://dx.doi.org/10.1155/2013/410567
Research Article

Power Consideration in a Piezoelectric Generator

1Laboratoire d’Electrotechnique et d’Electronique de Puissance, 59000 Villeneuve d’Ascq, France
2University Lille 1, avenue Paul Langevin, 59000 Villeneuve d’Ascq, France
3Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada M5S 3G4
4Arts et Métiers Paris Tech, Boulevard Louis XIV, 59000 Lille, France

Received 24 June 2013; Accepted 11 August 2013

Academic Editor: Chris Bowen

Copyright © 2013 Rémi Tardiveau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Guyomar and M. Lallart, “Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation,” Micromachines, vol. 2, no. 2, pp. 274–294, 2011. View at Google Scholar
  2. S. Roundy, P. K. Wright, and J. M. Rabaey, Energy Scavenging For Wireless Sensor Networks: With Special Focus on Vibrations, Technology and Engineering, Springer, 2004.
  3. G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann, “Damping as a result of piezoelectric energy harvesting,” Journal of Sound and Vibration, vol. 269, no. 3–5, pp. 991–1001, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lian and W. H. Liao, “Impedance matching for improving piezoelectric energy harvesting systems,” in Active and Passive Smart Structures and Integrated Systems, vol. 7643 of Proceedings of SPIE, p. 12, Hong Kong, China, April 2010.
  5. D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 4, pp. 584–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Shimose, K. Makihara, and J. Onoda, “Energy harvesting using an analog circuit under multimodal vibration,” Smart Materials Research, vol. 2013, Article ID 736487, 6 pages, 2013. View at Publisher · View at Google Scholar
  7. Y. Liu, G. Tian, Y. Wang, J. Lin, Q. Zhang, and H. F. Hofmann, “Active piezoelectric energy harvesting: general principle and experimental demonstration,” Journal of Intelligent Material Systems and Structures, vol. 20, no. 5, pp. 575–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Badel, D. Guyomar, E. Lefeuvre, and C. Richard, “Piezoelectric energy harvesting using a synchronized switch technique,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 8-9, pp. 831–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 865–876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. K. Tan, J. Y. Lee, and S. K. Panda, “Maximize piezoelectric energy harvesting using synchronous charge extraction technique for powering autonomous wireless transmitter,” in Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET '08), pp. 1123–1128, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. W. Hagood, W. H. Chung, and A. von Flotow, “Modelling of piezoelectric actuator dynamics for active structural control,” Journal of Intelligent Material Systems and Structures, vol. 1, no. 3, pp. 327–354, 1990. View at Google Scholar
  12. A. Bouscayrol, A. Bruyère, P. Delarue et al., “Teaching drive control using energetic macroscopic representation—initiation level,” in Proceedings of the European Conference on Power Electronics and Applications (EPE '07), pp. 1–9, Aalborg, Denmark, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Giraud-Audine and F. Giraud, “Preliminary feasibility study of a speed estimator for piezoelectric actuators used in forging processes,” in Proceedings of the 14th European Conference on Power Electronics and Applications (EPE '11), pp. 1–10, September 2011. View at Scopus
  14. Noliac group, http://www.noliac.com/.
  15. K. Uchino, K. H. Tan, and J. R. Giniewicz, Micromechatronics, CRC Press, 2003.
  16. F. Giraud, F. Dawson, C. Giraud-Audine, M. Amberg, and B. Lemaire-Semail, “A method to harvest energy from a haptic display in a handheld device: a preliminary study,” in Proceedings of the 15th European Conference on Power Electronics and Applcations (EPE '13), 2013.