Table of Contents
Smart Materials Research
Volume 2013 (2013), Article ID 767019, 8 pages
http://dx.doi.org/10.1155/2013/767019
Research Article

Reflection and Transmission Phenomena in Poroelastic Plate Sandwiched between Fluid Half Space and Porous Piezoelectric Half Space

1Department of Mathematics, Dyal Singh College, Karnal 132 001, India
2Department of Mathematics, Kurukshetra University, Kurukshetra 136 119, India

Received 25 April 2013; Accepted 22 June 2013

Academic Editor: Chris Bowen

Copyright © 2013 Vishakha Gupta and Anil K. Vashishth. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. E. G. Alvarez-Arenas and F. M. De Espinosa, “Characterization of porous piezoelectric ceramics: the length expander case,” Journal of the Acoustical Society of America, vol. 102, no. 6, pp. 3507–3515, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. G. Alvarez-Arenas, A. J. Mulholland, G. Hayward, and J. Gomatam, “Wave propagation in 0-3/3-3 connectivity composites with complex microstructure,” Ultrasonics, vol. 38, no. 9, pp. 897–907, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Roncari, C. Galassi, F. Craciun, C. Capiani, and A. Piancastelli, “A microstructural study of porous piezoelectric ceramics obtained by different methods,” Journal of the European Ceramic Society, vol. 21, no. 3, pp. 409–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. R. Bowen, A. Perry, A. C. F. Lewis, and H. Kara, “Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit,” Journal of the European Ceramic Society, vol. 24, no. 2, pp. 541–545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. P. Kumar, H. H. Kumar, and D. K. Kharat, “Study on pore-forming agents in processing of porous piezoceramics,” Journal of Materials Science, vol. 16, no. 10, pp. 681–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Nayfeh and H.-T. Chien, “The influence of piezoelectricity on free and reflected waves from fluid- loaded anisotropic plates,” Journal of the Acoustical Society of America, vol. 91, no. 3, pp. 1250–1261, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. A. H. Nayfeh and H.-T. Chien, “Wave propagation interaction with free and fluid-loaded piezoelectric substrates,” Journal of the Acoustical Society of America, vol. 91, no. 6, pp. 3126–3135, 1992. View at Google Scholar · View at Scopus
  8. A. N. Darinskii and M. Weihnacht, “Acoustic waves guided by a fluid layer on a piezoelectric substrate,” Journal of Applied Physics, vol. 104, no. 5, Article ID 054904, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Liu and S. He, “Properties of Love waves in layered piezoelectric structures,” International Journal of Solids and Structures, vol. 47, no. 2, pp. 169–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Vashishth and V. Gupta, “Vibrations of porous piezoelectric ceramic plates,” Journal of Sound and Vibration, vol. 325, no. 4-5, pp. 781–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Vashishth and V. Gupta, “Wave propagation in transversely isotropic porous piezoelectric materials,” International Journal of Solids and Structures, vol. 46, no. 20, pp. 3620–3632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Vashishth and V. Gupta, “Uniqueness theorem, theorem of reciprocity, and eigenvalue problems in linear theory of porous piezoelectricity,” Applied Mathematics and Mechanics, vol. 32, no. 4, pp. 479–494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Vashishth and V. Gupta, “Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface,” Journal of the Acoustical Society of America, vol. 129, no. 6, pp. 3690–3701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Levassort, J. Holc, E. Ringgaard, T. Bove, M. Kosec, and M. Lethiecq, “Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications,” Journal of Electroceramics, vol. 19, no. 1, pp. 125–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Marechal, F. Levassort, J. Holc et al., “Electromechanical properties of piezoelectric integrated structures on porous substrates,” Ferroelectrics, vol. 371, no. 1, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Kar-Gupta and T. A. Venkatesh, “Electromechanical response of porous piezoelectric materials,” Acta Materialia, vol. 54, no. 15, pp. 4063–4078, 2006. View at Publisher · View at Google Scholar · View at Scopus