Table of Contents
Smart Materials Research
Volume 2013, Article ID 865981, 7 pages
http://dx.doi.org/10.1155/2013/865981
Research Article

Semi-Active Pulse-Switching Vibration Suppression Using Sliding Time Window

Mechanical Department, Razi University, Kermanshah 6714967346, Iran

Received 29 November 2012; Revised 7 March 2013; Accepted 13 March 2013

Academic Editor: Chris Bowen

Copyright © 2013 S. Mohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Webster and W. H. Semke, “Broad-band viscoelastic rotational vibration control for remote sensing applications,” Journal of Vibration and Control, vol. 11, no. 11, pp. 1339–1356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. D. Rao, “Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes,” Journal of Sound and Vibration, vol. 262, no. 3, pp. 457–474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Guyomar, C. Richard, and S. Mohammadi, “Semi-passive random vibration control based on statistics,” Journal of Sound and Vibration, vol. 307, no. 3–5, pp. 818–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Badel, G. Sebald, D. Guyomar et al., “Piezoelectric vibration control by synchronized switching on adaptive voltage sources: towards wideband semi-active damping,” Journal of the Acoustical Society of America, vol. 119, no. 5, pp. 2815–2825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. R. Corr and W. W. Clark, “A novel semi-active multi-modal vibration control law for a piezoceramic actuator,” Journal of Vibration and Acoustics, vol. 125, no. 2, pp. 214–222, 2003. View at Google Scholar · View at Scopus
  6. D. Guyomar and A. Badel, “Nonlinear semi-passive multimodal vibration damping: an efficient probabilistic approach,” Journal of Sound and Vibration, vol. 294, no. 1-2, pp. 249–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Q. Liu, Z. H. Feng, J. He, and R. B. Liu, “Maximum mechanical energy harvesting strategy for a piezoelement,” Smart Materials and Structures, vol. 16, no. 6, pp. 2130–2136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ji, J. Qiu, K. Zhu, Y. Chen, and A. Badel, “Multi-modal vibration control using a synchronized switch based on a displacement switching threshold,” Smart Materials and Structures, vol. 18, no. 3, Article ID 035016, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Ji, J. Qiu, K. Zhu, and A. Badel, “Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy,” Journal of Sound and Vibration, vol. 329, no. 14, pp. 2751–2767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Ji, J. Qiu, and P. Xia, “Analysis of energy conversion in two-mode vibration control using synchronized switch damping approach,” Journal of Sound and Vibration, vol. 330, no. 15, pp. 3539–3560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Steinwolf, N. S. Ferguson, and R. G. White, “Variations in steepness of the probability density function of beam random vibration,” European Journal of Mechanics A, vol. 19, no. 2, pp. 319–341, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. L. D. Lutes and S. J. Hu, “Non-normal stochastic response of linear system,” Journal of Engineering Mechanics (ASCE), vol. 112, no. 2, pp. 127–141, 1986. View at Google Scholar
  13. C. G. Bucher and G. I. Schueller, “Non-Gaussian response of linear systems,” in Structural Dynamics. Recent Advances, pp. 103–127, Springer, Berlin, Germany, 1991. View at Google Scholar
  14. J. B. Roberts, “On the response of a simple oscillator to random impulses,” Journal of Sound and Vibration, vol. 4, no. 1, pp. 51–61, 1966. View at Google Scholar · View at Scopus
  15. K. G. McConnell, Vibration Testing Theory and Practice, John Wiley & Sons, New York, NY, USA, 1995.
  16. D. Steinberg, Vibration Analysis for Electronic Equipment, Wiley-Interscience, New York, NY, USA, 1988.
  17. W. T. Thomson, Theory of Vibration With Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.
  18. M. Sakata and K. Kimura, “Calculation of the non-stationary mean square response of a non-linear system subjected to non-white excitation,” Journal of Sound and Vibration, vol. 73, no. 3, pp. 333–343, 1980. View at Google Scholar · View at Scopus