Table of Contents
Smart Materials Research
Volume 2013, Article ID 957460, 5 pages
http://dx.doi.org/10.1155/2013/957460
Research Article

Improved Performance of the Piezoelectric Monomorph with Perpendicular Electrode Connections for Sensing and Energy Harvesting

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, China

Received 18 January 2013; Accepted 18 March 2013

Academic Editor: Xiaoning Jiang

Copyright © 2013 Ming Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Sodano, G. Park, and D. J. Inman, “Estimation of electric charge output for piezoelectric energy harvesting,” Strain, vol. 40, no. 2, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Roundy, E. S. Leland, J. Baker et al., “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 28–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Roundy, “On the effectiveness of vibration-based energy harvesting,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 809–823, 2005. View at Publisher · View at Google Scholar
  4. S. Priya, “Advances in energy harvesting using low profile piezoelectric transducers,” Journal of Electroceramics, vol. 19, no. 1, pp. 165–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. C. Shu and I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems,” Smart Materials and Structures, vol. 15, no. 6, article 001, pp. 1499–1512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Shu and I. C. Lien, “Efficiency of energy conversion for a piezoelectric power harvesting system,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2429–2438, 2006. View at Publisher · View at Google Scholar
  7. J. W. Xu, W. W. Shao, F. R. Kong, and Z. H. Feng, “Right-angle piezoelectric cantilever with improved energy harvesting efficiency,” Applied Physics Letters, vol. 96, no. 15, Article ID 152904, 2010. View at Publisher · View at Google Scholar
  8. F. Goldschmidtboeing and P. Woias, “Characterization of different beam shapes for piezoelectric energy harvesting,” Journal of Micromechanics and Microengineering, vol. 18, no. 10, Article ID 104013, 2008. View at Publisher · View at Google Scholar
  9. K. Uchino, “Materials issues in design and performance of piezoelectric actuators: an overview,” Acta Materialia, vol. 46, no. 11, pp. 3745–3753, 1998. View at Google Scholar
  10. X. Gao, W. H. Shih, and W. Y. Shih, “Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios,” Smart Materials and Structures, vol. 18, no. 12, Article ID 125018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Uchino, “Monomorph characteristics in lead zirconate based ceramics,” Japanese Journal of Applied Physics, vol. 26, pp. 201–203, 1987. View at Google Scholar
  12. K. Nakamuram, H. Ando, and H. Shimizu, “Bending vibrator consisting of a LiNbO3 plate with a ferroelectric inversion layer,” Japanese Journal of Applied Physics, vol. 26, pp. 198–200, 1987. View at Google Scholar
  13. X. Zhu, J. Zhu, S. Zhou et al., “Actuators, piezoelectric ceramics and functionally gradient materials,” Ferroelectric, vol. 263, pp. 67–76, 2001. View at Google Scholar
  14. Y. K. Hong, H. K. Park, S. Q. Lee, K. S. Moon, R. R. Vanga, and M. Levy, “Design and performance of a self-sensing, self-actuating piezoelectric monomorph with interdigitated electrodes,” in Optomechatronic Sensors, Actuators, and Control, vol. 6048 of Proceedings of SPIE, pp. 210–217, October 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. K. Hong and K. Moon, “Single crystal piezoelectric transducers to harvest vibration energy,” in Optomechatronic Actuators and Manipulation, vol. 6048 of Proceedings of SPIE, no. 60480E, December 2005. View at Publisher · View at Google Scholar