Table of Contents
Thrombosis
Volume 2012 (2012), Article ID 306263, 4 pages
http://dx.doi.org/10.1155/2012/306263
Clinical Study

Evaluation of RANKL/OPG Serum Concentration Ratio as a New Biomarker for Coronary Artery Calcification: A Pilot Study

1Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9188865531, Iran
2Pharmaceutical Research Center, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad 9188865531, Iran
3Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9188865531, Iran
4Department of Cardiovascular Diseases, Razavi Hospital, 9148857114, Iran
5Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9188865531, Iran

Received 12 November 2011; Revised 20 January 2012; Accepted 24 January 2012

Academic Editor: Giovanni de Gaetano

Copyright © 2012 Amir Hooshang Mohammadpour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Abedin, T. Omland, T. Ueland et al., “Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study),” American Journal of Cardiology, vol. 99, no. 4, pp. 513–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Abedin, Y. Tintut, and L. L. Demer, “Vascular calcification: mechanisms and clinical ramifications,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 7, pp. 1161–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. V. Anand, A. Lahiri, E. Lim, D. Hopkins, and R. Corder, “The relationship between plasma osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects,” Journal of the American College of Cardiology, vol. 47, no. 9, pp. 1850–1857, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Asanuma, C. P. Chung, A. Oeser et al., “Serum osteoprotegerin is increased and independently associated with coronary-artery atherosclerosis in patients with rheumatoid arthritis,” Atherosclerosis, vol. 195, no. 2, pp. e135–e141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. F. Boyce and L. Xing, “Biology of RANK, RANKL, and osteoprotegerin,” Arthritis Research and Therapy, vol. 9, supplement 1, article S1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Budoff, S. Achenbach, R. S. Blumenthal et al., “Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology,” Circulation, vol. 114, no. 16, pp. 1761–1791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Collin-Osdoby, “Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin,” Circulation Research, vol. 95, no. 11, pp. 1046–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Crisafulli, A. Micari, D. Altavilla et al., “Serum levels of osteoprotegerin and RANKL in patients with ST elevation acute myocardial infarction,” Clinical Science, vol. 109, no. 4, pp. 389–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. T. M. Doherty, L. A. Fitzpatrick, A. Shaheen, T. B. Rajavashisth, and R. C. Detrano, “Genetic determinants of arterial calcification associated with atherosclerosis,” Mayo Clinic Proceedings, vol. 79, no. 2, pp. 197–210, 2004. View at Google Scholar · View at Scopus
  10. Y. Liu and C. M. Shanahan, “Signalling pathways and vascular calcification,” Frontiers in Bioscience, vol. 16, no. 4, pp. 1302–1314, 2011. View at Publisher · View at Google Scholar
  11. T. C. Gerber, “Diagnostic and prognostic implications of coronary artery calcification detected by computed tomography,” Calcified Tissue International, vol. 91, pp. 123–137, 2009. View at Google Scholar
  12. J. Golledge, M. McCann, S. Mangan, A. Lam, and M. Karan, “Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis,” Stroke, vol. 35, no. 7, pp. 1636–1641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. C. Keelan, L. F. Bielak, K. Ashai et al., “Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography,” Circulation, vol. 104, no. 4, pp. 412–417, 2001. View at Google Scholar · View at Scopus
  14. J. Shamsara, M. Ramezani, and A. H. Mohammadpour, “The RANKL: osteoprotegerin (OPG) ratio as a new biomarker for coronary artery disease,” Iranian Journal of Medical Hypotheses and Ideas, vol. 3, no. 1, 2009. View at Google Scholar · View at Scopus
  15. M. Ketteler and C. Giachelli, “Novel insights into vascular calcification.,” Kidney International. Supplement, no. 105, pp. S5–S9, 2006. View at Google Scholar · View at Scopus
  16. S. Kiechl, G. Schett, J. Schwaiger et al., “Soluble receptor activator of nuclear factor-κB ligand and risk for cardiovascular disease,” Circulation, vol. 116, no. 4, pp. 385–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. L. Lim, T. W. Wong, L. O. Yaneza, C. De Larrazabal, J. K. Lau, and H. K. Boey, “Non-invasive detection of significant coronary artery disease with multi-section computed tomography angiography in patients with suspected coronary artery disease,” Clinical Radiology, vol. 61, no. 2, pp. 174–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. E. Rackley and N. J. Weissman, “The role of plaque rupture in acute coronary syndromes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 54, pp. 743–759, 2009. View at Google Scholar
  19. C. E. Rackley, “Pathogenesis of atherosclerosis,” Atherosclerosis, vol. 202, pp. 167–174, 2009. View at Google Scholar