Table of Contents Author Guidelines Submit a Manuscript
Tuberculosis Research and Treatment
Volume 2012, Article ID 970203, 6 pages
http://dx.doi.org/10.1155/2012/970203
Clinical Study

An Early Morning Sputum Sample Is Necessary for the Diagnosis of Pulmonary Tuberculosis, Even with More Sensitive Techniques: A Prospective Cohort Study among Adolescent TB-Suspects in Uganda

1Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
2Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
3Iganga/Mayuge Demographic Surveillance Sites, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
4KNCV Tuberculosis Foundation, The Hague and CINIMA, Academic Medical Centre, Parkstraat 17, 2514 JD The Hague, The Netherlands

Received 17 October 2012; Revised 19 November 2012; Accepted 20 November 2012

Academic Editor: Carlo Garzelli

Copyright © 2012 Willy Ssengooba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Global tuberculosis control report, 2011,” http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf.
  2. C. Didilescu, E. Ibraim, and M. Tigau, “The epidemiological profile and current evolutionary trends in tuberculosis in adolescents (15–19 years old) in the capital,” Pneumoftiziologia, vol. 46, no. 3, pp. 193–199, 1997. View at Google Scholar · View at Scopus
  3. R. L. Nemir, “Perspectives in adolescent tuberculosis: three decades of experience,” Pediatrics, vol. 78, no. 3, pp. 399–405, 1986. View at Google Scholar · View at Scopus
  4. A. Kam, L. Ford-Jones, P. Malloy, K. Khan, and I. Kitai, “Active tuberculosis among adolescents in Toronto, Canada: clinical features and delays in diagnosis,” Pediatric Infectious Disease Journal, vol. 26, no. 4, pp. 355–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. De Pontual, L. Balu, P. Ovetchkine et al., “Tuberculosis in adolescents: a French retrospective study of 52 cases,” Pediatric Infectious Disease Journal, vol. 25, no. 10, pp. 930–932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. L. J. Byeon, L. J. Chul, Y. Young et al., “Three cases of pulmonary and/or intestinal tuberculosis in adolescents,” Korean Journal of Pediatric, vol. 50, no. 11, pp. 1134–1138, 2007. View at Google Scholar
  7. 2006, WHO: tuberculosis Coalition for Technical Assistance. International Standards for Tuberculosis Care (ISTC). The Hague: tuberculosis Technical Assistance, http://www.who.int/tb/publications/2006/istc_report.pdf.
  8. A. D. Harries, N. B. Mphasa, C. Mundy, A. Banerjee, J. H. Kwanjana, and F. M. L. Salaniponi, “Screening tuberculosis suspects using two sputum smears,” International Journal of Tuberculosis and Lung Disease, vol. 4, no. 1, pp. 36–40, 2000. View at Google Scholar · View at Scopus
  9. H. Getahun, M. Harrington, R. O'Brien, and P. Nunn, “Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes,” The Lancet, vol. 369, no. 9578, pp. 2042–2049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Dowdy, R. E. Chaisson, G. Maartens, E. L. Corbett, and S. E. Dorman, “Impact of enhanced tuberculosis diagnosis in South Africa: a mathematical model of expanded culture and drug susceptibility testing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11293–11298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Apers, J. Mutsvangwa, J. Magwenzi et al., “A comparison of direct microscopy, the concentration method and the Mycobacteria Growth Indicator Tube for the examination of sputum for acid-fast bacilli,” International Journal of Tuberculosis and Lung Disease, vol. 7, no. 4, pp. 376–381, 2003. View at Google Scholar · View at Scopus
  12. 2006, WHO: improving the diagnosis and treatment of smear-negative pulmonary and extra- pulmonary tuberculosis among adults and adolescents. Recommendations for HIV-prevalent and resource-constrained settings, http://www.who.int/tb/publications/2006/tbhiv_recommendations.pdf.
  13. G. L. Woods, “The mycobacteriology laboratory and new diagnostic techniques,” Infectious Disease Clinics of North America, vol. 16, no. 1, pp. 127–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Mandalakas and J. R. Starke, “Current concepts of childhood tuberculosis,” Seminars in Pediatric Infectious Diseases, vol. 16, no. 2, pp. 93–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Strong and G. P. Kubica, “Isolation and identification of Mycobacterium tuberculosis: a guide for the level II laboratory,” Centers for Disease Control; HHS Publication No. (CDC) 81-8390http://books.google.co.ug/books?id=_VurMQEACAAJ, 1981.
  16. S. H. Siddiqi, 2006, MGIT Procedure Manual, For BACTEC MGIT 960 TB System, Specially Prepared for FIND MGIT demonstration Project, http://www.finddiagnostics.org/export/sites/default/resource-centre/find_documentation/pdfs/mgit_manual_nov_2007.pdf.
  17. K. Hirano, A. Aono, M. Takahashi, and C. Abe, “Mutation including IS6110 insertion in the gene encoding the MPB64 protein of Capilia TB− negative Mycobacterium tuberculosis isolates,” Journal of Clinical Microbiology, vol. 42, no. 1, pp. 390–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. WHO Strategic and Technical Advisory Group for Tuberculosis, “Report on conclusions and recommendations,” June 2007, http://www.who.int/tb/events/stag_report_2007.pdf.
  19. S. Rohit, S. Mukerjee, S. Neeta, and P. P. Sharma, “Diagnosis of tuberculosis under RNTCP: examination of two or three sputum specimens,” Indian Journal of Tuberculosis, vol. 48, no. 13, 16 pages, 2001. View at Google Scholar
  20. O. D. Schoch, P. Rieder, C. Tueller et al., “Diagnostic yield of sputum, induced sputum, and bronchoscopy after radiologic tuberculosis screening,” American Journal Respiratory Critical Care Medicine, vol. 175, pp. 80–86, 2007. View at Google Scholar
  21. P. Monkongdee, K. D. McCarthy, K. P. Cain et al., “Yield of acid-fast smear and mycobacterial culture for tuberculosis diagnosis in people with human immunodeficiency virus,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 9, pp. 903–908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. J. Moore, C. A. W. Evans, R. H. Gilman et al., “Microscopic-observation drug-susceptibility assay for the diagnosis of TB,” The New England Journal of Medicine, vol. 355, no. 15, pp. 1539–1550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Ssengooba, N. Kiwanuka, D. P. Kateete et al., “Incremental yield of serial sputum cultures for diagnosis of tuberculosis among HIV infected smear negative pulmonary TB suspects in Kampala, Uganda,” PLoS ONE, vol. 7, Article ID e37650, 5 pages, 2012. View at Google Scholar
  24. V. N. Chihota, A. D. Grant, K. Fielding et al., “Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 8, pp. 1024–1033, 2010. View at Google Scholar · View at Scopus
  25. J. J. Lee, J. Suo, C. B. Lin, J. D. Wang, T. Y. Lin, and Y. C. Tsai, “Comparative evaluation of the BACTEC MGIT 960 system with solid medium for isolation of mycobacteria,” International Journal of Tuberculosis and Lung Disease, vol. 7, no. 6, pp. 569–574, 2003. View at Google Scholar · View at Scopus
  26. E. Tortoli, P. Cichero, C. Piersimoni, M. T. Simonetti, G. Gesu, and D. Nista, “Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study,” Journal of Clinical Microbiology, vol. 37, no. 11, pp. 3578–3582, 1999. View at Google Scholar · View at Scopus
  27. E. L. N. Maciel, T. N. do Prado, R. L. Peres, M. Palaci, J. L. Johnson, and R. Dietze, “Guided sputum sample collection and culture contamination rates in the diagnosis of pulmonary TB,” Jornal Brasileiro de Pneumologia, vol. 35, no. 5, pp. 460–463, 2009. View at Google Scholar · View at Scopus
  28. W. Worodria, J. Anderson, A. Cattamanchi et al., “The role of speciation in positive Lowenstein-Jensen culture isolates from a high tuberculosis Burden country,” PLoS ONE, vol. 11, Article ID e27017, 6 pages, 2011. View at Google Scholar
  29. World Health Organization, TB diagnostics and laboratory strengthening—WHO policy, 2007, http://www.who.int/tb/laboratory/policy_liquid_medium_for_culture_dst/en/index.html.
  30. K. D. McCarthy, K. P. Cain, K. L. Winthrop et al., “Nontuberculous mycobacterial disease in patients with HIV in Southeast Asia,” American Journal Respiratory Critical Care Medicine, vol. 185, no. 9, pp. 981–988, 2012. View at Google Scholar
  31. C. Muchwa, J. Akol, A. Etwom et al., “Evaluation of Capilia TB assay for rapid identification of Mycobacterium tuberculosis complex in BACTEC MGIT 960 and BACTEC, 9120 blood cultures,” BMC Research Notes, article 44, vol. 5, no. 1, 2012. View at Google Scholar