Table of Contents Author Guidelines Submit a Manuscript
Tuberculosis Research and Treatment
Volume 2013 (2013), Article ID 670836, 13 pages
http://dx.doi.org/10.1155/2013/670836
Research Article

Design of Thymidine Analogues Targeting Thymidilate Kinase of Mycobacterium tuberculosis

1Laboratory for Simulations and Biomolecular Physics, Advanced Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
2Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), University of Douala, P.O. Box 8580, Douala, Cameroon
3International Centre for Science and High Technology, UNIDO, Area Science Park, Padriciano 99, 34012 Trieste, Italy
4Laboratoire de Physique Fondamentale et Appliquée, Université d’Abobo-Adjamé, 02 BP 801 Abidjan 02, Cote d’Ivoire
5Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovakia
6Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
7International Centre for Applied Research and Sustainable Technology (ICARST), 81404 Bratislava, Slovakia
8Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia

Received 30 November 2012; Accepted 12 December 2012

Academic Editor: José R. Lapa e Silva

Copyright © 2013 Luc Calvin Owono Owono et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Nunn and D. Falzon, “WHO information note on tuberculosis and pandemic influenza A, (H1N1),” 2009, http://www.who.int/entity/tb/features_archive/h1n1_and_tuberculosis.pdf.
  2. E. L. Korenromp, A. L. Bierrenbach, B. G. Williams, and C. Dye, “The measurement and estimation of tuberculosis mortality,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 3, pp. 283–303, 2009. View at Google Scholar · View at Scopus
  3. D. J. Murphy and J. R. Brown, “Novel drug target strategies against Mycobacterium tuberculosis,” Current Opinion in Microbiology, vol. 11, no. 5, pp. 422–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. “global tuberculosis control—surveillance, planning, financing,” WHO Report, 2008, http://www.who.int/tb/publications/global_report/2008/en/index.html.
  5. M. D. Raviglione, D. E. Snider Jr., and A. Kochi, “Globa epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic,” The Journal of the American Medical Association, vol. 273, no. 3, pp. 220–226, 1995. View at Publisher · View at Google Scholar
  6. WHO Global Tuberculosis Programme, “Tuberculosis,” Fact sheet no. 104, 2002, http://www.who.int/mediacentre/factsheets/fs104/en/.
  7. C. Dye, D. Maher, D. Weil, M. Espinal, and M. Raviglione, “Targets for global tuberculosis control,” International Journal of Tuberculosis and Lung Disease, vol. 10, no. 4, pp. 460–462, 2006. View at Google Scholar · View at Scopus
  8. H. Lång, G. Quaglio, and O. F. Olesen, “Tuberculosis research in the European Union: past achievements and future challenges,” Tuberculosis, vol. 90, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. I. M. Boshoff, X. Xu, K. Tahlan et al., “Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis: an essential role for NAD in nonreplicating bacilli,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19329–19341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Lavie, N. Ostermann, R. Brundiers et al., “Structural basis for efficient phosphorylation of 3′-azidothymidine monophosphate by Escherichia coli thymidylate kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14045–14050, 1998. View at Google Scholar · View at Scopus
  11. A. Haouz, V. Vanheusden, H. Munier-Lehmann et al., “Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase: new insights into the phosphoryl transfer mechanism,” Journal of Biological Chemistry, vol. 278, no. 7, pp. 4963–4971, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Gopalakrishnan, V. Aparna, J. Jeevan, M. Ravi, and G. R. Desiraju, “A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models,” Journal of Chemical Information and Modeling, vol. 45, no. 4, pp. 1101–1108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Ursby, M. Weik, E. Fioravanti, M. Delarue, M. Goeldner, and D. Bourgeois, “Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals,” Acta Crystallographica Section D, vol. 58, no. 4, pp. 607–614, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Li De La Sierra, H. Munier-Lehmann, A. M. Gilles, O. Bârzu, and M. Delarue, “X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolution,” Journal of Molecular Biology, vol. 311, no. 1, pp. 87–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pochet, L. Dugué, G. Labesse, M. Delepierre, and H. Munier-Lehmann, “Comparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans,” ChemBioChem, vol. 4, no. 8, pp. 742–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Vanheusden, P. Van Rompaey, H. Munier-Lehmann, S. Pochet, P. Herdewijn, and S. Van Calenbergh, “Thymidine and thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase,” Bioorganic and Medicinal Chemistry Letters, vol. 13, no. 18, pp. 3045–3048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Gasse, D. Douguet, V. Huteau, G. Marchal, H. Munier-Lehmann, and S. Pochet, “Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity,” Bioorganic and Medicinal Chemistry, vol. 16, no. 11, pp. 6075–6085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Van Daele, H. Munier-Lehmann, P. M. S. Hendrickx et al., “Synthesis and biological evaluation of bicyclic nucleosides as inhibitors of M. tuberculosis thymidylate kinase,” ChemMedChem, vol. 1, no. 10, pp. 1081–1090, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Familiar, H. Munier-Lehmann, A. Negri et al., “Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase,” ChemMedChem, vol. 3, no. 7, pp. 1083–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Frecer, P. Seneci, and S. Miertus, “Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase,” Journal of Computer-Aided Molecular Design, vol. 25, no. 1, pp. 31–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar · View at Scopus
  22. “Insight-II and discover molecular modeling and simulation package,” version 2005, Accelrys, San Diego, Calif, USA, 2005.
  23. V. Frecer, M. Kabeláč, P. De Nardi, S. Pricl, and S. Miertuš, “Structure-based design of inhibitors of NS3 serine protease of hepatitis C virus,” Journal of Molecular Graphics and Modelling, vol. 22, no. 3, pp. 209–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Frecer, A. Jedinak, A. Tossi et al., “Structure based design of inhibitors of aspartic protease of HIV-1,” Letters in Drug Design and Discovery, vol. 2, no. 8, pp. 638–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Frecer, F. Berti, F. Benedetti, and S. Miertus, “Design of peptidomimetic inhibitors of aspartic protease of HIV-1 containing -PheΨPro- core and displaying favourable ADME-related properties,” Journal of Molecular Graphics and Modelling, vol. 27, no. 3, pp. 376–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Dali, M. Keita, E. Megnassan, V. Frecer, and S. Miertus, “Insight into selectivity of peptidomimetic Inhibitors with modified statine core for plasmepsin II of Plasmodium falciparum over human cathepsin D,” Chemical Biology and Drug Design, vol. 79, no. 4, pp. 411–430, 2012. View at Publisher · View at Google Scholar
  27. E. Megnassan, M. Keita, C. Bieri, A. Esmel, V. Frecer, and S. Miertus, “Design of novel dihydroxynaphthoic acid inhibitors of Plasmodium falciparum lactate dehydrogenase,” Medicinal Chemistry, vol. 8, no. 5, pp. 970–984, 2012. View at Publisher · View at Google Scholar
  28. J. R. Maple, M. J. Hwang, T. P. Stockfish et al., “Derivation of class II force fields. 1. Methodology and quantum force field for the alkyl functional group and alkane molecules,” Journal of Computational Chemistry, vol. 15, no. 2, pp. 162–182, 1994. View at Publisher · View at Google Scholar
  29. “Cerius2 life sciences molecular simulation software,” version 4.6, Accelrys, San Diego, Calif, USA, 2002.
  30. M. K. Gilson and B. Honig, “The inclusion of electrostatic hydration energies in molecular mechanics calculations,” Journal of Computer-Aided Molecular Design, vol. 5, no. 1, pp. 5–20, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig, “Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects,” Journal of Computational Chemistry, vol. 23, no. 1, pp. 128–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. “Discovery studio molecular modeling and simulation program,” version 2.5, Accelrys, San Diego, Calif, USA, 2009.
  33. C. J. F. Böttcher, Theory of Electric Polarization, Elsevier Press, Amsterdam, The Netherlands, 1973.
  34. S. Miertus, E. Scrocco, and J. Tomasi, “Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects,” Chemical Physics, vol. 55, no. 1, pp. 117–129, 1981. View at Google Scholar · View at Scopus
  35. V. Frecer and S. Miertus, “Polarizable continuum model of solvation for biopolymers,” International Journal of Quantum Chemistry, vol. 42, no. 5, pp. 1449–1468, 1992. View at Publisher · View at Google Scholar
  36. S. Fischer, J. C. Smith, and C. S. Verma, “Dissecting the vibrational entropy change on protein/ligand binding: Burial of a water molecule in bovine pancreatic trypsin inhibitor,” Journal of Physical Chemistry B, vol. 105, no. 33, pp. 8050–8055, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Schwarzl, T. B. Tschopp, J. C. Smith, and S. Fischer, “Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction?” Journal of Computational Chemistry, vol. 23, no. 12, pp. 1143–1149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Freire, “Do enthalpy and entropy distinguish first in class from best in class?” Drug Discovery Today, vol. 13, no. 19-20, pp. 869–874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Li, J. Sutter, and R. Hoffmann, “HypoGen: an automated system for generating 3D predictive pharmacophore models,” in Pharmacophore Perception, Development and Use in Drug Design, O. F. Güner, Ed., pp. 171–189, International University Line, La Jolla, Calif, USA, 2000. View at Google Scholar
  40. C. H. Andrade, K. F. M. Pasqualoto, E. I. Ferreira, and A. J. Hopfmger, “Rational design and 3D-pharmacophore mapping of 5′-thiourea- substituted α-thymidine analogues as mycobacterial TMPK inhibitors,” Journal of Chemical Information and Modeling, vol. 49, no. 4, pp. 1070–1078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Ostermann, A. Lavie, S. Padiyar et al., “Potentiating AZT activation: structures of wild-type and mutant human thymidylate kinase suggest reasons for the mutants' improved kinetics with the HIV prodrug metabolite AZTMP,” Journal of Molecular Biology, vol. 304, no. 1, pp. 43–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. K. S. Toti, F. Verbeke, M. D. P. Risseeuw, V. Frecer, H. Munier-Lehmann, and S. Van Calenbergh, “Synthesis and evaluation of 5′-modified thymidines and 5-hydroxymethyl-2′-deoxyuridines as Mycobacterium tuberculosis thymidylate kinase inhibitors,” Bioorganic and Medicinal Chemistry, vol. 21, no. 1, pp. 257–268, 2013. View at Publisher · View at Google Scholar
  43. O. Familiar, H. Munier-Lehmann, A. Negri et al., “Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase,” ChemMedChem, vol. 3, no. 7, pp. 1083–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Kumar, E. Megnassan, I. Siddiqi, V. Frecer, and S. Miertus, “Rationa design of inhibitors of Mycobacterium tuberculosis Thymidine monophosphate kinase,” In press.