Texture, Stress, and Microstructure

Texture, Stress, and Microstructure / 1982 / Article

Open Access

Volume 5 |Article ID 753730 | https://doi.org/10.1155/TSM.5.171

J. L. Bouchez, P. Duval, "The Fabric of Polycrystalline Ice Deformed in Simple Shear: Experiments in Torsion, Natural Deformation and Geometrical Interpretation", Texture, Stress, and Microstructure, vol. 5, Article ID 753730, 20 pages, 1982. https://doi.org/10.1155/TSM.5.171

The Fabric of Polycrystalline Ice Deformed in Simple Shear: Experiments in Torsion, Natural Deformation and Geometrical Interpretation

Received02 Nov 1981
Accepted27 Apr 1982

Abstract

Three cylinders of artificial ice have been deformed in torsion at about –10℃ up to finite shear strains γ of 0.6, 0.95 and 2. The initial random lattice orientation rapidly evolves into a bimodal distribution of the basal slip planes as already observed by Kamb (1972) and Duval (1981) for low-strains experiments near the melting point. For the γ = 0.6 and 0.95 experiments, one family of grains (> 50%) corresponds to basal planes tending to parallel the imposed shear plane; the basal planes of the other family make a broader maximum at about 60° from the shear plane. The direction of minimum concentration between the two populations approximately corresponds to the flattening plane or to the elongation direction of the strain ellipsoid. With increasing strain (γ = 2) the second submaximum vanishes and only the principal maximum parallel to the shear plane remains. This evolution is conformable with the data of Hudleston (1977) in a natural shear zone in glacial ice; it also compares remarkably well with Etchecopar's (1977) geometrical computer model of simple shear in the same range of γ values. Single slip on the basal plane with no preferential slip direction in that plane can explain the analogy between fabrics in ice deformed in plane strain and fabrics obtained from the two-dimensional computer model.The bimodal distribution reflects predominant slip on the basal plane; the progressively increasing heterogeneous strain enhances internal distorsion, rigid body rotation and recrystallization of grains unfavorably oriented for further slip, leading to the unimodal distribution. The adequacy of fabric analyses to infer the strain regime and the sense of shear in plastically deformed rocks is strengthened.

Copyright © 1982 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views68
Downloads0
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.