Table of Contents
Textures and Microstructures
Volume 10, Issue 4, Pages 325-346

Neutron Diffraction Texture Analysis of Multi-Phase Systems

1Department of Physical Metallurgy, TU Clausthal, Germany
2GKSS-Research Center, Geesthacht GmbH, Germany

Received 23 February 1989; Accepted 23 March 1989

Copyright © 1989 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Neutron diffraction methods for texture analysis are closely parallel to well-known X-ray diffraction techniques. The chief advantage of neutron diffraction over X-ray diffraction, however, arises from the fact that the interaction of neutrons with matter is relatively weak, and consequently the penetration depth of neutrons is 102–103 times larger than that of X-rays. Hence neutron diffraction is an efficient tool for measuring textures in multi-phase systems. Based on the high transmission of a neutron beam the effect of anisotropic absorption in multi-phase materials can be neglected in most cases. Moreover, the analysis of bulk textures becomes possible, such that textures in a wide variety of multi-phase systems can be studied which are of special interest in engineering and science (metals, alloys, composites, ceramics and geological specimens).