Table of Contents
Textures and Microstructures
Volume 35, Issue 3-4, Pages 163-173

Torsion Texture Measurements With High-Energy Synchrotron Radiation on NiAl

1Institute of Structural Physics, Dresden University of Technology, Dresden 01062, Germany
2HASYLAB at DESY, Notkestr. 85, Hamburg 22603, Germany
3Geo Research Centre Potsdam, Telegrafenberg, Potsdam 14473, Germany

Received 13 September 2003

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Diffraction with high-energy synchrotron radiation is a new experimental method to determine textures of materials, which due to the special properties of this radiation, in the future may have advantages in terms of accuracy of local texture measurements in comparison to established methods like Electron back scatter diffraction (EBSD). In the present study NiAl polycrystals with two different initial textures have been deformed in torsion at 727°C and 1000°C and their texture development has been measured with highenergy synchrotron radiation. Torsion enables the study of texture formation with strain as well as the exploration of large strains without changing the shape of the samples. The pole figures indicate the preferred alignment of ‹100› with the shear direction and {110} with the shear plane. High pressure torsion may also open new possibilities in terms of grain refinement and texture formation and thus ductilization of NiAl.