Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 5 (1998), Issue 4, Pages 357-372

Design of CMOS PSCD Circuits and Checkers for Stuck-At and Stuck-On Faults

Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We present in this paper an approach to designing partially strongly code-disjoint (PSCD) CMOS circuits and checkers, considering transistor stuck-on faults in addition to gate-level stuck-at faults. Our design-for-testability (DFT) technique requires only a small number of extra transistors for monitoring abnormal static currents, coupled with a simple clocking scheme, to detect the stuck-on faults concurrently. The DFT circuitry not only can detect the faults in the functional circuit but also can detect or tolerate faults in itself, making it a good candidate for checker design. Switch and circuit level simulations were performed on a sample circuit, and a sample 4-out-of-8 code checker chip using the proposed technique has been designed, fabricated, and tested, showing the correctness of the method. Performance penalty is reduced by a novel BiCMOS checker circuit.