The complex recess and gate shape of modem compound FETs greatly affect the device parasitics and therefore impose the need for proper description of the device geometry and surface conditions in any practical device simulations. In this paper we describe a new Monte Carlo (MC) module incorporated in our Heterojunction 2D Finite element FET simulator H2F [1]. The module combines realistic quadrilateral finite-element description of the device geometry with realistic particle simulation of the non-equilibrium hot carrier transport in short recess gate compound FETs. A Single Programme Multiple Data (SPMD) parallel approach makes it possible to use our MC simulator for practical design work, generating the necessary I-V characteristics in parallel. The capabilities of the finite element MC module are illustrated in example simulations of a 200nm pseudomorphic HEMT fabricated in the Nanoelectronics Research Centre of Glasgow University.