Table of Contents
VLSI Design
Volume 6, Issue 1-4, Pages 367-371

Gain Calculation in a Quantum Well Laser Simulator Using an Eight Band k.p Model

Beckman Institute, University of Illinois, Urbana 61801, IL, USA

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Effects of non-parabolicity and band-warping of the energy dispersion are entered in a quantum well laser simulator (MINILASE-II), which self-consistently solves Schödinger's equation, Poisson's equation, the drift diffusion equations, and the photon rate equations. An eight band k.p model is used to determine the electronic band structure for a strained-layer In.2Ga.8As/Al.1Ga.9As system. The k.p calculation is performed independently of the laser simulator, and exported to MINILASE-II in the form of a density of states and an energydependent averaged momentum matrix element. The results obtained for the gain and modulation response are compared to those obtained from a parabolic band model with a constant matrix element.