VLSI Design

VLSI Design / 1998 / Article

Open Access

Volume 6 |Article ID 84685 | 9 pages | https://doi.org/10.1155/1998/84685

Modeling Nonlinear and Chaotic Dynamics in Semiconductor Device Structures


We review the modeling and simulation of electrical transport instabilities in semiconductors with a special emphasis on recent progress in the application to semiconductor microstructures. The following models are treated in detail: (i) The dynamics of current filaments in the regime of low-temperature impurity breakdown is studied. In particular we perform 2D simulations of the nascence of a filament upon application of a bias voltage. (ii) Vertical electrical transport in layered semiconductor structures like the heterostructure hot electron diode is considered. Periodic as well as chaotic spatio-temporal spiking of the current is obtained. In particular we find long transients of spatio-temporal chaos preceding regular spiking.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.