VLSI Design

VLSI Design / 1999 / Article
Special Issue

Current Advances in Parallel Logic Simulation

View this Special Issue

Open Access

Volume 9 |Article ID 61087 | 15 pages | https://doi.org/10.1155/1999/61087

Dynamic Cancellation: Selecting Time Warp Cancellation Strategies at Runtime

Received26 May 1998


The performance of Time Warp parallel discrete event simulators can be affected by the cancellation strategy used to send anti-messages. Under aggressive cancellation, antimessage generation occurs immediately after a straggler message is detected. In contrast, lazy cancellation delays the sending of anti-messages until forward processing from a straggler message confirms that the premature computation did indeed generate an incorrect message. Previous studies have shown that neither approach is clearly superior to the other in all cases (even within the same application domain). Furthermore, no strategy exists to make a priori determination of the more favorable cancellation strategy. Most existing Time Warp systems merely provide a switch for the user to select the cancellation strategy employed. This paper explores the use of simulation time decision procedures to select cancellation strategies. The approach is termed Dynamic Cancellation and it assigns the capability for selecting cancellation strategies to the Logical Processes (LPs) in a Time Warp simulation. Thus, within a single parallel simulation both strategies may be employed by distinct LPs and even across the simulation lifetime of an LP. Empirical analysis using several control strategies show that dynamic cancellation always performs with the best static strategy and, in some cases, dynamic cancellation provides some nominal (5–10%) performance gain over the best static strategy.

Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.