Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2013 (2013), Article ID 984376, 22 pages
Research Article

Computational Performance Optimisation for Statistical Analysis of the Effect of Nano-CMOS Variability on Integrated Circuits

School of Computer Science, The University of Manchester, Manchester M13 9PL, UK

Received 16 November 2012; Revised 15 May 2013; Accepted 15 May 2013

Academic Editor: Chien-In Henry Chen

Copyright © 2013 Zheng Xie and Doug Edwards. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The intrinsic variability of nanoscale VLSI technology must be taken into account when analyzing circuit designs to predict likely yield. Monte-Carlo- (MC-) and quasi-MC- (QMC-) based statistical techniques do this by analysing many randomised or quasirandomised copies of circuits. The randomisation must model forms of variability that occur in nano-CMOS technology, including “atomistic” effects without intradie correlation and effects with intradie correlation between neighbouring devices. A major problem is the computational cost of carrying out sufficient analyses to produce statistically reliable results. The use of principal components analysis, behavioural modeling, and an implementation of “Statistical Blockade” (SB) is shown to be capable of achieving significant reduction in the computational costs. A computation time reduction of 98.7% was achieved for a commonly used asynchronous circuit element. Replacing MC by QMC analysis can achieve further computation reduction, and this is illustrated for more complex circuits, with the results being compared with those of transistor-level simulations. The “yield prediction” analysis of SRAM arrays is taken as a case study, where the arrays contain up to 1536 transistors modelled using parameters appropriate to 35 nm technology. It is reported that savings of up to 99.85% in computation time were obtained.