Table of Contents Author Guidelines Submit a Manuscript
Advances in Astronomy
Volume 2010, Article ID 278434, 21 pages
http://dx.doi.org/10.1155/2010/278434
Review Article

Environmental Mechanisms Shaping the Nature of Dwarf Spheroidal Galaxies: The View of Computer Simulations

Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

Received 14 June 2009; Revised 17 September 2009; Accepted 1 October 2009

Academic Editor: Andrey V. Kravtsov

Copyright © 2010 Lucio Mayer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Mateo, “Dwarf galaxies of the local group,” Annual Review of Astronomy & Astrophysics, vol. 36, no. 1, pp. 435–506, 1998. View at Google Scholar
  2. X. Hernandez, G. Gilmore, and D. Valls-Gabaud, “Non-parametric star formation histories for four dwarf spheroidal galaxies of the local group,” Monthly Notices of the Royal Astronomical Society, vol. 317, no. 4, pp. 831–842, 2000. View at Google Scholar
  3. M. G. Coleman and J. T. A. de Jong, “A deep survey of the Fornax dSph. I. Star formation history,” The Astrophysical Journal, vol. 685, no. 2, pp. 933–946, 2008. View at Publisher · View at Google Scholar
  4. C. Orban, O. Y. Gnedin, D. R. Weisz, E. D. Skillman, A. E. Dolphin, and J. A. Holtzman, “Delving deeper into the tumultuous lives of galactic dwarfs: modeling star formation histories,” The Astrophysical Journal, vol. 686, no. 2, pp. 1030–1044, 2008. View at Publisher · View at Google Scholar
  5. K. Chiboucas, I. D. Karachentsev, and R. B. Tully, “Discovery of new dwarf galaxies in the M81 group,” The Astronomical Journal, vol. 137, no. 2, pp. 3009–3037, 2009. View at Publisher · View at Google Scholar
  6. I. Misgeld, M. Hilker, and S. Mieske, “The early-type dwarf galaxy population of the Centaurus cluster,” Astronomy & Astrophysics, vol. 496, no. 3, pp. 683–693, 2009. View at Publisher · View at Google Scholar
  7. S. J. Penny, C. J. Conselice, S. De Rijcke, and E. V. Held, “Hubble Space Telescope survey of the Perseus Cluster. I. The structure and dark matter content of cluster dwarf spheroidals,” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 3, pp. 1054–1062, 2009. View at Publisher · View at Google Scholar
  8. A. Dekel and J. Silk, “The origin of dwarf galaxies, cold dark matter, and biased galaxy formation,” The Astrophysical Journal, vol. 303, no. 1, pp. 39–55, 1986. View at Publisher · View at Google Scholar
  9. J. Einasto, E. Saar, A. Kaasik, and A. D. Chernin, “Missing mass around galaxies: morphological evidence,” Nature, vol. 252, no. 5479, pp. 111–113, 1974. View at Publisher · View at Google Scholar
  10. D. N. C. Lin and S. Faber, “Some implications of nonluminous matter in dwarf spheroidal galaxies,” The Astrophysical Journal, vol. 266, no. 1, pp. L21–L25, 1983. View at Publisher · View at Google Scholar
  11. J. S. Bullock, A. V. Kravtsov, and D. H. Weinberg, “Reionization and the abundance of galactic satellites,” The Astrophysical Journal, vol. 539, no. 2, pp. 517–521, 2000. View at Google Scholar
  12. H. Susa and M. Umemura, “Formation of dwarf galaxies during the cosmic reionization,” The Astrophysical Journal, vol. 600, no. 1, pp. 1–16, 2004. View at Google Scholar
  13. L. Mayer, F. Governato, M. Colpi et al., “Tidal stirring and the origin of dwarf spheroidals in the local group,” The Astrophysical Journal, vol. 547, no. 2, pp. L123–L127, 2001. View at Publisher · View at Google Scholar
  14. L. Mayer, F. Governato, M. Colpi et al., “The metamorphosis of tidally stirred dwarf galaxies,” The Astrophysical Journal, vol. 559, no. 2, pp. 754–784, 2001. View at Publisher · View at Google Scholar
  15. E. K. Grebel, “The stellar content of local group galaxies,” in Proceedings of the 192nd Symposium of the International Astronomical Union (IAU '99), P. Whitelock and R. Cannon, Eds., p. 17, ASP, Cape Town, South Africa, 1999.
  16. J. Diemand, M. Kuhlen, and P. Madau, “Formation and evolution of galaxy dark matter halos and their substructure,” The Astrophysical Journal, vol. 667, no. 2, pp. 859–877, 2007. View at Publisher · View at Google Scholar
  17. S. E. Koposov, J. T. A. de Jong, V. Belokurov et al., “The discovery of two extremely low luminosity Milky Way globular clusters,” The Astrophysical Journal, vol. 669, pp. 337–342, 2007. View at Publisher · View at Google Scholar
  18. L. Mayer, B. Moore, T. Quinn, F. Governato, and J. Stadel, “Tidal debris of dwarf spheroidals as a probe of structure formation models,” Monthly Notices of the Royal Astronomical Society, vol. 336, no. 1, pp. 119–130, 2002. View at Publisher · View at Google Scholar
  19. L. Mayer, “The environment of dwarf spheroidal satellites; ram pressure, tides and external radiation fields,” in Near-Field Cosmology with Dwarf Elliptical Galaxies, H. Jerjen and B. Binggeli, Eds., vol. 220 of Proceedings of the International Astronomical Union Symposia and Colloquia, no. 198, Cambridge University Press, Cambridge, UK, 2005. View at Google Scholar
  20. L. Mayer, C. Mastropietro, J. Wadsley, J. Stadel, and B. Moore, “Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas,” Monthly Notices of the Royal Astronomical Society, vol. 369, no. 3, pp. 1021–1038, 2006. View at Publisher · View at Google Scholar
  21. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada, “Where are the missing galactic satellites?” The Astrophysical Journal, vol. 522, no. 1, part 1, pp. 82–92, 1999. View at Google Scholar
  22. B. Moore, S. Ghigna, F. Governato et al., “Dark matter substructure within galactic halos,” The Astrophysical Journal, vol. 524, no. 1, pp. L19–L22, 1999. View at Google Scholar
  23. S. Ghigna, B. Moore, F. Governato, G. Lake, T. Quinn, and J. Stadel, “Dark matter haloes within clusters,” Monthly Notices of the Royal Astronomical Society, vol. 300, no. 1, pp. 146–162, 1998. View at Google Scholar
  24. A. V. Kravtsov, O. Y. Gnedin, and A. A. Klypin, “The tumultuous lives of galactic dwarfs and the missing satellites problem,” The Astrophysical Journal, vol. 609, no. 2, pp. 482–497, 2004. View at Publisher · View at Google Scholar
  25. S. P. D. Gill, A. Knebe, B. K. Gibson, and M. A. Dopita, “The evolution of substructure. II. Linking dynamics to environment,” Monthly Notices of the Royal Astronomical Society, vol. 351, no. 2, pp. 410–422, 2004. View at Publisher · View at Google Scholar
  26. O. Y. Gnedin, L. Hernquist, and J. P. Ostriker, “Tidal shocking by extended mass distributions,” The Astrophysical Journal, vol. 514, no. 1, part 1, pp. 109–118, 1999. View at Google Scholar
  27. G. Taffoni, L. Mayer, M. Colpi, and F. Governato, “On the life and death of satellite haloes,” Monthly Notices of the Royal Astronomical Society, vol. 341, no. 2, pp. 434–448, 2003. View at Publisher · View at Google Scholar
  28. L. A. Aguilar and S. D. M. White, “The density profiles of tidally stripped galaxies,” The Astrophysical Journal, vol. 307, no. 1, pp. 97–109, 1986. View at Publisher · View at Google Scholar
  29. J. E. Taylor and A. Babul, “The dynamics of sinking satellites around disk galaxies: a poor man's alternative to high-resolution numerical simulations,” The Astrophysical Journal, vol. 559, no. 2, pp. 716–735, 2001. View at Publisher · View at Google Scholar
  30. J. I. Read, M. I. Wilkinson, N. W. Evans, G. Gilmore, and J. T. Kleyna, “The tidal stripping of satellites,” Monthly Notices of the Royal Astronomical Society, vol. 366, no. 2, pp. 429–437, 2006. View at Publisher · View at Google Scholar
  31. J. I. Read, M. I. Wilkinson, N. W. Evans, G. Gilmore, and J. T. Kleyna, “The importance of tides for the local group dwarf spheroidals,” Monthly Notices of the Royal Astronomical Society, vol. 367, no. 1, pp. 387–399, 2006. View at Publisher · View at Google Scholar
  32. M. Colpi, L. Mayer, and F. Governato, “Dynamical friction and the evolution of satellites in virialized halos: the theory of linear response,” The Astrophysical Journal, vol. 525, no. 2, pp. 720–733, 1999. View at Google Scholar
  33. J. Peñarrubia, A. J. Benson, D. Martínez-Delgado, and H. W. Rix, “Modeling tidal streams in evolving dark matter halos,” The Astrophysical Journal, vol. 645, no. 1, pp. 240–255, 2006. View at Publisher · View at Google Scholar
  34. S. Kazantzidis, L. Mayer, C. Mastropietro, J. Diemand, J. Stadel, and B. Moore, “Density profiles of cold dark matter substructure: implications for the missing-satellites problem,” The Astrophysical Journal, vol. 608, no. 2, pp. 663–679, 2004. View at Publisher · View at Google Scholar
  35. J. Peñarrubia, A. W. McConnachie, and J. F. Navarro, “The cold dark matter halos of local group dwarf spheroidals,” The Astrophysical Journal, vol. 672, no. 2, pp. 904–913, 2008. View at Publisher · View at Google Scholar
  36. F. Stoehr, S. D. M. White, G. Tormen, and V. Springel, “The satellite population of the Milky Way in a ΛCDM universe,” Monthly Notices of the Royal Astronomical Society, vol. 335, no. 4, pp. L84–L88, 2002. View at Publisher · View at Google Scholar
  37. J. Peñarrubia, J. F. Navarro, and A. W. McConnachie, “The tidal evolution of local group dwarf spheroidals,” The Astrophysical Journal, vol. 673, no. 1, pp. 226–240, 2008. View at Publisher · View at Google Scholar
  38. P. Madau, J. Diemand, and M. Kuhlen, “Dark matter subhalos and the dwarf satellites of the Milky Way,” The Astrophysical Journal, vol. 679, no. 2, pp. 1260–1271, 2008. View at Publisher · View at Google Scholar
  39. J. Klimentowski, E. L. Lokas, S. Kazantzidis, L. Mayer, and G. Mamon, “Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 2015–2029, 2009. View at Publisher · View at Google Scholar
  40. J. Klimentowski, E. L. Łokas, S. Kazantzidis, L. Mayer, G. A. Mamon, and F. Prada, “The orientation and kinematics of inner tidal tails around dwarf galaxies orbiting the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 400, no. 4, pp. 2162–2168, 2009. View at Publisher · View at Google Scholar
  41. L. Mayer, S. Kazantzidis, C. Mastropietro, and J. Wadsley, “Early gas stripping as the origin of the darkest galaxies in the universe,” Nature, vol. 445, no. 7129, pp. 738–740, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. E. L. Lokas, “Dark matter distribution in dwarf spheroidal galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 333, no. 3, pp. 697–708, 2002. View at Publisher · View at Google Scholar
  43. A. R. Zentner and J. S. Bullock, “Halo substructure and the power spectrum,” The Astrophysical Journal, vol. 598, no. 1, pp. 49–72, 2003. View at Publisher · View at Google Scholar
  44. L. E. Strigari, J. S. Bullock, M. Kaplinghat, J. Diemand, M. Kuhlen, and P. Madau, “Redefining the missing satellites problem,” The Astrophysical Journal, vol. 669, no. 2, pp. 676–683, 2007. View at Publisher · View at Google Scholar
  45. E. K. Grebel and J. S. Gallagher III, “The impact of reionization on the stellar populations of nearby dwarf galaxies,” The Astrophysical Journal, vol. 610, no. 2, pp. L89–L92, 2004. View at Publisher · View at Google Scholar
  46. J. E. Gunn and J. R. I. Gott, “On the infall of matter into clusters of galaxies and some effects on their evolution,” The Astrophysical Journal, vol. 176, p. 1, 1972. View at Publisher · View at Google Scholar
  47. M.-M. Mac Low and A. Ferrara, “Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection,” The Astrophysical Journal, vol. 513, no. 1, pp. 142–155, 1999. View at Publisher · View at Google Scholar
  48. J. I. Read, A. P. Pontzen, and M. Viel, “On the formation of dwarf galaxies and stellar haloes,” Monthly Notices of the Royal Astronomical Society, vol. 371, no. 2, pp. 885–897, 2006. View at Publisher · View at Google Scholar
  49. F. Haardt and P. Madau, “Radiative transfer in a clumpy universe. II. The ultraviolet extragalactic background,” The Astrophysical Journal, vol. 461, no. 1, part 1, pp. 20–37, 1996. View at Google Scholar
  50. A. A. Cole, E. D. Skillman, E. Tolstoy et al., “Leo A: a late-blooming survivor of the epoch of reionization in the local group,” The Astrophysical Journal, vol. 659, no. 1, pp. L17–L20, 2007. View at Publisher · View at Google Scholar
  51. B. Willman, J. J. Dalcanton, D. Martínez-Delgado et al., “A new Milky Way dwarf galaxy in URSA major,” The Astrophysical Journal, vol. 626, no. 2, pp. L85–L88, 2005. View at Publisher · View at Google Scholar
  52. J. D. Simon and M. Geha, “The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem,” The Astrophysical Journal, vol. 670, no. 1, pp. 313–331, 2007. View at Publisher · View at Google Scholar
  53. I. D. Karachentsev, “The local group and other neighboring galaxy groups,” The Astronomical Journal, vol. 129, no. 1, pp. 178–188, 2005. View at Publisher · View at Google Scholar
  54. A. Bouchard, G. S. da Costa, and H. Jerjen, “The environmental influence on the evolution of local galaxies,” The Astronomical Journal, vol. 137, no. 2, pp. 3038–3052, 2009. View at Publisher · View at Google Scholar
  55. F. Fraternali, E. Tolstoy, M. J. Irwin, and A. A. Cole, “Life at the periphery of the local group: the kinematics of the Tucana dwarf galaxy,” Astronomy & Astrophysics, vol. 499, no. 1, pp. 121–128, 2009. View at Publisher · View at Google Scholar
  56. F. Governato, L. Mayer, J. Wadsley et al., “The formation of a realistic disk galaxy in Λ-dominated cosmologies,” The Astrophysical Journal, vol. 607, no. 2, pp. 688–696, 2004. View at Publisher · View at Google Scholar
  57. J. Klimentowski, E. L. Lokas, S. Kazantzidis, F. Prada, L. Mayer, and G. A. Mamon, “Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 378, no. 1, pp. 353–368, 2007. View at Publisher · View at Google Scholar
  58. N. Raha, J. A. Sellwood, R. A. James, and F. D. Kahn, “A dynamical instability of bars in disk galaxies,” Nature, vol. 352, no. 6334, pp. 411–412, 1991. View at Google Scholar
  59. V. P. Debattista, L. Mayer, C. M. Carollo, B. Moore, J. Wadsley, and T. Quinn, “The secular evolution of disk structural parameters,” The Astrophysical Journal, vol. 645, no. 1, pp. 209–227, 2006. View at Publisher · View at Google Scholar
  60. J. Kormendy, “Kinematics of extragalactic bulges: evidence that some bulges are really disks,” in Galactic Bulges, H. DeJonghe and H. J. Habing, Eds., p. 209, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1993. View at Google Scholar
  61. C. Mastropietro, B. Moore, L. Mayer, V. P. Debattista, R. Piffaretti, and J. Stadel, “Morphological evolution of discs in clusters,” Monthly Notices of the Royal Astronomical Society, vol. 364, no. 2, pp. 607–619, 2005. View at Publisher · View at Google Scholar
  62. V. Belokurov, D. B. Zucker, N. W. Evans et al., “A faint new Milky Way satellite in bootes,” The Astrophysical Journal, vol. 647, no. 2, pp. L111–L114, 2006. View at Publisher · View at Google Scholar
  63. M. G. Walker, V. Belokurov, N. W. Evans et al., “LEO V: spectroscopy of a distant and disturbed satellite,” The Astrophysical Journal, vol. 694, no. 2, pp. L144–L147, 2009. View at Publisher · View at Google Scholar
  64. T. Lisker, E. K. Grebel, and B. Binggeli, “Virgo cluster early-type dwarf galaxies with the sloan digital sky survey. I. On the possible disk nature of bright early-type dwarfs,” The Astronomical Journal, vol. 132, no. 2, pp. 497–513, 2006. View at Publisher · View at Google Scholar
  65. E. L. Lokas, J. Klimentowski, S. Kazantzidis, and L. Mayer, “The anatomy of Leo I: how tidal tails affect the kinematics,” Monthly Notices of the Royal Astronomical Society, vol. 390, no. 2, pp. 625–634, 2008. View at Publisher · View at Google Scholar
  66. J. I. Read, L. Mayer, A. M. Brooks, F. Governato, and G. Lake, “A dark matter disc in three cosmological simulations of Milky Way mass galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 1, pp. 44–51, 2009. View at Google Scholar
  67. E. L. Łokas, S. Kazantzidis, J. Klimentowski, L. Mayer, and S. Callegari, “The stellar structure and kinematics of dwarf spheroidal galaxies formed by tidal stirring,” Astrophysical Journal, vol. 708, no. 2, pp. 1032–1047, 2010. View at Publisher · View at Google Scholar
  68. E. D'Onghia and G. Lake, “Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark,” The Astrophysical Journal, vol. 686, no. 2, part 2, pp. L61–L65, 2008. View at Publisher · View at Google Scholar
  69. S. Kazantzidis, A. V. Kravtsov, A. R. Zentner, B. Allgood, D. Nagai, and B. Moore, “The effect of gas cooling on the shapes of dark matter halos,” The Astrophysical Journal, vol. 611, no. 2, pp. L73–L76, 2004. View at Publisher · View at Google Scholar
  70. S. E. Koposov, H. W. Rix, and D. W. Hogg, “Constraining the Milky Way potential with a 6-D phase-space map of the GD-1 stellar stream,” submitted to The Astrophysical Journal.
  71. L. V. Sales, J. F. Navarro, D. G. Lambas, S. D. M. White, and D. J. Croton, “Satellite galaxies and fossil groups in the Millennium Simulation,” Monthly Notices of the Royal Astronomical Society, vol. 382, no. 4, pp. 1901–1916, 2007. View at Publisher · View at Google Scholar
  72. P. J. Quinn and J. Goodman, “Sinking satellites of spiral systems,” The Astrophysical Journal, vol. 309, pp. 472–495, 1986. View at Publisher · View at Google Scholar
  73. E. D'Onghia, V. Springel, L. Hernquist, and D. Keres, “Substructure depletion in the Milky Way halo by the disk,” The Astrophysical Journal, vol. 709, no. 2, pp. 1138–1147, 2010. View at Publisher · View at Google Scholar
  74. L. Mayer, F. Governato, and T. Kaufmann, “The formation of disk galaxies in computer simulations,” Advanced Science Letters, vol. 1, no. 1, pp. 7–27, 2008. View at Google Scholar
  75. F. Governato, B. Willman, L. Mayer et al., “Forming disc galaxies in ACDM simulations,” Monthly Notices of the Royal Astronomical Society, vol. 374, no. 4, pp. 1479–1494, 2007. View at Publisher · View at Google Scholar
  76. L. Mayer, “Baryons in SPH simulation of structure formation and evolution; approaching the end of the dark era,” in Proceedings of “Baryons in Dark Matter Halos”, R. Dettmar, U. Klein, and P. Salucci, Eds., Proceedings of Science, p. 37.1, SISSA, Novigrad, Croatia, October 2004.
  77. T. Kaufmann, L. Mayer, J. Wadsley, J. Stadel, and B. Moore, “Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 375, no. 1, pp. 53–67, 2007. View at Publisher · View at Google Scholar
  78. S. E. Koposov, J. Yoo, H. W. Rix, D. H. Weinberg, A. V. Macci, and J. M. Escud, “A quantitative explanation of the observed population of Milky Way satellite galaxies,” The Astrophysical Journal, vol. 696, no. 2, pp. 2179–2194, 2009. View at Publisher · View at Google Scholar
  79. R. R. Muñoz, S. R. Majewski, S. Zaggia et al., “Exploring halo substructure with giant stars. XI. The tidal tails of the Carina dwarf spheroidal galaxy and the discovery of magellanic cloud stars in the Carina foreground,” The Astrophysical Journal, vol. 649, no. 1, pp. 201–223, 2006. View at Publisher · View at Google Scholar
  80. D. Martínez-Delgado, A. Aparicio, M. A. Gómez-Flechoso, and R. Carrera, “Tidal streams in the galactic halo: evidence for the sagittarius northern stream or traces of a new nearby dwarf galaxy,” The Astrophysical Journal, vol. 549, no. 2, pp. L199–L202, 2001. View at Publisher · View at Google Scholar
  81. R. R. Muñoz, S. R. Majewski, and K. V. Johnston, “Modeling the structure and dynamics of dwarf spheroidal galaxies with dark matter and tides,” The Astrophysical Journal, vol. 679, no. 1, pp. 346–372, 2008. View at Publisher · View at Google Scholar
  82. K. R. Sembach, B. P. Wakker, B. D. Savage et al., “Highly ionized high-velocity gas in the vicinity of the galaxy,” The Astrophysical Journal, Supplement Series, vol. 146, no. 1, pp. 165–208, 2003. View at Publisher · View at Google Scholar
  83. S. D. Murray, S. D. M. White, J. M. Blondin, and D. N. C. Lin, “Dynamical instabilities in two-phase media and the minimum masses of stellar systems,” The Astrophysical Journal, vol. 407, no. 2, pp. 588–596, 1993. View at Google Scholar
  84. O. Agertz, B. Moore, J. Stadel et al., “Fundamental differences between SPH and grid methods,” Monthly Notices of the Royal Astronomical Society, vol. 380, no. 3, pp. 963–978, 2007. View at Publisher · View at Google Scholar
  85. J. I. Read, T. Hayfield, and O. Agertz, “Resolving mixing in smoothed particle hydrodynamics,” submitted to Monthly Notices of the Royal Astronomical Society.
  86. P. E. J. Nulsen, “Transport processes and the stripping of cluster galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 198, pp. 1007–1016, 1982. View at Google Scholar
  87. S. Mashchenko, C. Carignan, and A. Bouchard, “Impact of ultraviolet radiation from giant spirals on the evolution of dwarf galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 352, no. 1, pp. 168–180, 2004. View at Publisher · View at Google Scholar
  88. C. Leitherer, L. I-Hui, D. Calzetti, and T. M. Heckman, “Global far-ultraviolet (912–1800 Å) properties of star-forming galaxies,” The Astrophysical Journal, vol. 140, no. 2, pp. 303–329, 2002. View at Google Scholar
  89. F. Governato, C. B. Brook, A. M. Brooks et al., “Forming a large disc galaxy from a z<1 major merger,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 1, pp. 312–320, 2009. View at Publisher · View at Google Scholar
  90. A. Fernandez-Soto, K. M. Lanzetta, and H. W. Chen, “The UV escape fraction of high-redshift galaxies,” in Galaxy Evolution: Theory & Observations, vol. 17 of Revista Mexicana de Astronomía y Astrofísica, pp. 218–219, 2003. View at Google Scholar
  91. A. E. Shapley, C. C. Steidel, M. Pettini, K. L. Adelberger, and D. K. Erb, “The direct detection of lyman continuum emission from star-forming galaxies at z3,” The Astrophysical Journal, vol. 651, no. 2, pp. 688–703, 2006. View at Publisher · View at Google Scholar
  92. M. Geha, M. R. Blanton, M. Masjedi, and A. A. West, “The baryon content of extremely low mass dwarf galaxies,” The Astrophysical Journal, vol. 653, no. 1, pp. 240–254, 2006. View at Publisher · View at Google Scholar
  93. A. K. Leroy, F. Walter, E. Brinks et al., “The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively,” The Astronomical Journal, vol. 136, no. 6, pp. 2782–2845, 2008. View at Publisher · View at Google Scholar
  94. J. Schaye, “Star formation thresholds and galaxy edges: why and where,” The Astrophysical Journal, vol. 609, no. 2, pp. 667–682, 2004. View at Publisher · View at Google Scholar
  95. E. Gardan, J. Braine, K. F. Schuster, N. Brouillet, and A. Sievers, “Particularly efficient star formation in M 33,” Astronomy & Astrophysics, vol. 473, no. 1, pp. 91–104, 2007. View at Publisher · View at Google Scholar
  96. N. Y. Gnedin, K. Tassis, and A. V. Kravtsov, “Modeling molecular hydrogen and star formation in cosmological simulations,” The Astrophysical Journal, vol. 697, no. 1, pp. 55–67, 2009. View at Publisher · View at Google Scholar
  97. B. E. Robertson and A. V. Kravtsov, “Molecular hydrogen and global star formation relations in galaxies,” The Astrophysical Journal, vol. 680, no. 2, pp. 1083–1111, 2008. View at Publisher · View at Google Scholar
  98. J. F. Navarro, V. R. Eke, and C. S. Frenk, “The cores of dwarf galaxy haloes,” Monthly Notices of the Royal Astronomical Society, vol. 283, no. 3, pp. L72–L78, 1996. View at Google Scholar
  99. O. Y. Gnedin and H. Zhao, “Maximum feedback and dark matter profiles of dwarf galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 333, no. 2, pp. 299–306, 2002. View at Publisher · View at Google Scholar
  100. J. I. Read and G. Gilmore, “Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles,” Monthly Notices of the Royal Astronomical Society, vol. 356, no. 1, pp. 107–124, 2005. View at Publisher · View at Google Scholar
  101. J. Dubinski and R. G. Carlberg, “The structure of cold dark matter halos,” The Astrophysical Journal, vol. 378, no. 2, pp. 496–503, 1991. View at Google Scholar
  102. P. James, “An infrared study of dwarf galaxies in the Virgo cluster,” Monthly Notices of the Royal Astronomical Society, vol. 250, no. 1, pp. 544–554, 1991. View at Google Scholar
  103. V. Belokurov, D. B. Zucker, N. W. Evans et al., “Cats and dogs, hair and a hero: a quintet of new Milky Way companions,” The Astrophysical Journal, vol. 654, no. 2, pp. 897–906, 2007. View at Publisher · View at Google Scholar
  104. R. Barkana and A. Loeb, “The photoevaporation of dwarf galaxies during reionization,” The Astrophysical Journal, vol. 523, no. 1, pp. 54–65, 1999. View at Google Scholar
  105. R. S. Somerville, “Can photoionization squelching resolve the substructure crisis?” The Astrophysical Journal, vol. 572, no. 1, pp. L23–L26, 2002. View at Publisher · View at Google Scholar
  106. M. Ricotti and N. Y. Gnedin, “Formation histories of dwarf galaxies in the local group,” The Astrophysical Journal, vol. 629, no. 1, pp. 259–267, 2005. View at Publisher · View at Google Scholar
  107. N. Y. Gnedin and A. V. Kravtsov, “Fossils of reionization in the local group,” The Astrophysical Journal, vol. 645, no. 2, pp. 1054–1061, 2006. View at Publisher · View at Google Scholar
  108. P. Madau, M. Kuhlen, J. Diemand et al., “Fossil remnants of reionization in the halo of the Milky Way,” The Astrophysical Journal, vol. 689, no. 1, pp. L41–L44, 2008. View at Google Scholar
  109. S. Kazantzidis, L. Mayer, and B. Moore, “Galaxies and overmerging: what does it take to destroy a satellite galaxy?” Astronomical Society of the Pacific, vol. 327, p. 155, 2004. View at Google Scholar
  110. V. Belokurov et al., “The discovery of Segue 2: a prototype of the population of satellites of satellites,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 1748–1755, 2009. View at Google Scholar
  111. M. Geha, B. Willman, J. D. Simon et al., “The least-luminous galaxy: spectroscopy of the Milky Way satellite segue 1,” The Astrophysical Journal, vol. 692, no. 2, pp. 1464–1475, 2009. View at Publisher · View at Google Scholar
  112. A. V. Maccio, X. Kang, F. Fontanot, R. S. Somerville, S. E. Koposov, and P. Monaco, “Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe,” submitted to Monthly Notices of the Royal Astronomical Society. View at Publisher · View at Google Scholar
  113. Y.-S. Li and A. Helmi, “Infall of substructures on to a Milky Way-like dark halo,” Monthly Notices of the Royal Astronomical Society, vol. 385, no. 3, pp. 1365–1373, 2008. View at Publisher · View at Google Scholar
  114. S. Mashchenko, J. Wadsley, and H. M. P. Couchman, “Stellar feedback in dwarf galaxy formation,” Science, vol. 319, no. 5860, pp. 174–177, 2008. View at Publisher · View at Google Scholar · View at PubMed
  115. E. J. Bernard, M. Monelli, C. Gallart et al., “The ACS LCID project. I. Short-period variables in the isolated dwarf spheroidal galaxies cetus and tucana,” The Astrophysical Journal, vol. 699, no. 2, pp. 1742–1764, 2009. View at Publisher · View at Google Scholar