Table of Contents Author Guidelines Submit a Manuscript
Advances in Astronomy
Volume 2010, Article ID 407394, 11 pages
http://dx.doi.org/10.1155/2010/407394
Review Article

Kinematics of Milky Way Satellites: Mass Estimates, Rotation Limits, and Proper Motions

Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA

Received 8 May 2009; Revised 6 August 2009; Accepted 29 September 2009

Academic Editor: Andrey V. Kravtsov

Copyright © 2010 Louis E. Strigari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Shapley, “A stellar system of a new type,” Harvard College Observatory Bulletin, no. 908, pp. 1–11, 1938. View at Google Scholar
  2. M. Mateo, “Dwarf galaxies of the local group,” Annual Review of Astronomy and Astrophysics, vol. 36, no. 1, pp. 435–506, 1998. View at Google Scholar · View at Scopus
  3. M. Aaronson, “Accurate radial velocities for carbon stars in Draco and Ursa Minor—the first hint of a dwarf spheroidal mass-to-light ratio,” The Astrophysical Journal, vol. 266, pp. L11–L15, 1983. View at Google Scholar
  4. N. B. Suntzeff, M. Mateo, D. M. Terndrup, E. W. Olszewski, D. Geisler, and W. Weller, “Spectroscopy of giants in the Sextans dwarf spheroidal galaxy,” The Astrophysical Journal, vol. 418, no. 1, pp. 208–228, 1993. View at Google Scholar · View at Scopus
  5. M. Mateo, E. Olszewski, D. L. Welch, P. Fischer, and W. Kunkel, “A kinematic study of the fornax dwarf spheroidal galaxy,” The Astronomical Journal, vol. 102, no. 3, pp. 914–926, 1991. View at Google Scholar · View at Scopus
  6. M. Mateo, E. W. Olszewski, C. Pryor, D. L. Welch, and P. Fischer, “The Carina dwarf spheroidal galaxy: how dark is it?” The Astronomical Journal, vol. 105, no. 2, pp. 510–526, 1993. View at Google Scholar · View at Scopus
  7. G. Lake, “The distribution of dark matter in Draco and Ursa Minor,” Monthly Notices of the Royal Astronomical Society, vol. 244, pp. 701–705, 1990. View at Google Scholar
  8. O. E. Gerhard and D. N. Spergel, “Dwarf spheroidal galaxies and the mass of the neutrino,” The Astrophysical Journal, vol. 389, no. 1, pp. L9–L11, 1992. View at Google Scholar · View at Scopus
  9. S. M. Faber and D. N. C. Lin, “Is there nonluminous matter in dwarf spheroidal galaxies,” The Astrophysical Journal, vol. 266, pp. L17–L20, 1983. View at Google Scholar
  10. G. Gilmore, M. I. Wilkinson, R. F. G. Wyse et al., “The observed properties of dark matter on small spatial scales,” The Astrophysical Journal, vol. 663, no. 2, pp. 948–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Walker, M. Mateo, E. W. Olszewski et al., “Velocity dispersion profiles of seven dwarf spheroidal galaxies,” The Astrophysical Journal, vol. 667, pp. L53–L56, 2007. View at Google Scholar
  12. M. G. Walker, M. Mateo, and E. W. Olszewski, “Systemic proper motions of Milky Way satellites from stellar redshifts: the Carina, Fornax, Sculptor, and Sextans dwarf spheroidals,” The Astrophysical Journal, vol. 687, no. 2, pp. L75–L78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. E. Strigari, J. S. Bullock, M. Kaplinghat et al., “A common mass scale for satellite galaxies of the Milky Way,” Nature, vol. 454, no. 7208, pp. 1096–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. L. Lokas, “The mass and velocity anisotropy of the Carina, Fornax, Sculptor and Sextans dwarf spheroidal galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 394, pp. L102–L106, 2009. View at Google Scholar
  15. B. Willman, M. R. Blanton, A. A. West et al., “A new Milky Way companion: unusual globular cluster or extreme dwarf satellite?” The Astronomical Journal, vol. 129, no. 6, pp. 2692–2700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Willman, J. J. Dalcanton, D. Martinez-Delgado et al., “A new Milky Way dwarf galaxy in Ursa major,” The Astrophysical Journal, vol. 626, no. 2, pp. L85–L88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Belokurov, D. B. Zucker, N. W. Evans et al., “Cats and dogs, hair and a hero: a quintet of new Milky Way companions,” The Astrophysical Journal, vol. 654, no. 2, pp. 897–906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. R. Munoz, J. L. Carlin, P. M. Frinchaboy, D. L. Nidever, S. R. Majewski, and R. J. Patterson, “Exploring halo substructure with giant stars: the dynamics and metallicity of the dwarf spheroidal in bootes,” The Astrophysical Journal, vol. 650, no. 1, pp. L51–L54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. F. Martin, R. A. Ibata, S. C. Chapman, M. Irwin, and G. F. Lewis, “A Keck/DEIMOS spectroscopic survey of faint galactic satellites: searching for the least massive dwarf galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 380, no. 1, pp. 281–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Simon and M. Geha, “The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem,” The Astrophysical Journal, vol. 670, no. 1, pp. 313–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Geha, B. Willman, J. D. Simon et al., “The least luminous galaxy: spectroscopy of the Milky Way satellite segue 1,” The Astrophysical Journal, vol. 692, pp. 1464–1475, 2009. View at Google Scholar
  22. E. N. Kirby, J. D. Simon, M. Geha, P. Guhathakurta, and A. Frebel, “Uncovering extremely metal-poor stars in the Milky Way's ultrafaint dwarf spheroidal satellite galaxies,” The Astrophysical Journal, vol. 685, no. 1, pp. L43–L46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. E. Strigari, J. S. Bullock, M. Kaplinghat, J. Diemand, M. Kuhlen, and P. Madau, “Redefining the missing satellites problem,” The Astrophysical Journal, vol. 669, no. 2, pp. 676–683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. E. Strigari, S. M. Koushiappas, J. S. Bullock, and M. Kaplinghat, “Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments,” Physical Review D, vol. 75, no. 8, Article ID 083526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Essig, N. Sehgal, and L. E. Strigari, “Bounds on cross sections and lifetimes for dark matter annihilation and decay into charged leptons from gamma-ray observations of dwarf galaxies,” Physical Review D, vol. 80, no. 2, Article ID 023506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. D. Martinez, J. S. Bullock, M. Kaplinghat, L. E. Strigari, and R. Trotta, “Indirect dark matter detection from dwarf satellites: joint expectations from astrophysics and supersymmetry,” Journal of Cosmology and Astroparticle Physics, vol. 2009, no. 6, article 014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Hogan and J. J. Dalcanton, “New dark matter physics: clues from halo structure,” Physical Review D, vol. 62, Article ID 063511, 2000. View at Google Scholar
  28. O. E. Gerhard, “A new family of distribution functions for spherical galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 250, pp. 812–830, 1991. View at Google Scholar
  29. P. C. Gregory, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, Cambridge University Press, Cambridge, UK, 2005.
  30. L. E. Strigari, S. M. Koushiappas, J. S. Bullock et al., “The most dark-matter-dominated galaxies: predicted gamma-ray signals from the faintest Milky Way dwarfs,” The Astrophysical Journal, vol. 678, no. 2, pp. 614–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kaplinghat and L. E. Strigari, “Proper motion of Milky Way dwarf spheroidals from line-of-sight velocities,” The Astrophysical Journal, vol. 682, no. 2, pp. L93–L96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. P. van der Marel, D. R. Alves, E. Hardy, and N. B. Suntzeff, “New understanding of large magellanic cloud structure, dynamics, and orbit from carbon star kinematics,” The Astronomical Journal, vol. 124, pp. 2639–2663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. P. van der Marel and P. Guhathakurta, “M31 transverse velocity and local group mass from satellite kinematics,” Astrophysical Journal, vol. 678, no. 1, pp. 187–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. N. F. Martin, J. T. A. de Jong, and H.-W. Rix, “A comprehensive maximum likelihood analysis of the structural properties of faint Milky Way satellites,” The Astrophysical Journal, vol. 684, no. 2, pp. 1075–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Odenkirchen, E. K. Grebel, D. Harbeck et al., “New insights on the Draco dwarf spheroidal galaxy from the Sloan Digital Sky Survey: a larger radius and no tidal tails,” The Astronomical Journal, vol. 122, no. 5, pp. 2538–2553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Lynden-Bell, “Dwarf galaxies and globular clusters in high velocity hydrogen streams,” Monthly Notices of the Royal Astronomical Society, vol. 174, pp. 695–710, 1976. View at Google Scholar
  37. E. D'Onghia and G. Lake, “Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark,” The Astrophysical Journal, vol. 686, no. 2, pp. L61–L65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Metz, P. Kroupa, C. Theis, G. Hensler, and H. Jerjen, “Did the Milky Way dwarf satellites enter the halo as a group?” The Astrophysical Journal, vol. 697, no. 1, pp. 269–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. B. Westfall, S. R. Majewski, J. C. Ostheimer et al., “Exploring halo substructure with giant stars. VIII. The extended structure of the Sculptor dwarf spheroidal galaxy,” The Astronomical Journal, vol. 131, no. 1, pp. 375–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Battaglia, A. Helmi, E. Tolstoy, M. Irwin, V. Hill, and P. Jablonka, “The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy,” The Astrophysical Journal, vol. 681, no. 1, pp. L13–L16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Piatek, C. Pryor, P. Bristow et al., “Proper motions of dwarf spheroidal galaxies from Hubble Space Telescope imaging. IV. Measurement for Sculptor,” The Astronomical Journal, vol. 131, no. 3, pp. 1445–1460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. G. Walker, M. Mateo, and E. W. Olszewski, “Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dsph galaxies: data from the magellan/MMFS survey,” The Astronomical Journal, vol. 137, no. 2, pp. 3100–3108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Merritt, “The distribution of dark matter in the coma cluster,” The Astrophysical Journal, vol. 313, pp. 121–135, 1987. View at Google Scholar
  44. M. Niederste-Ostholt, V. Belokurov, N. W. Evans, G. Gilmore, R. F. G. Wyse, and J. E. Norris, “The origin of Segue 1,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 4, pp. 1771–1781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, NJ, USA, 2nd edition, 2008.
  46. M. Irwin and D. Hatzidimitriou, “Structural parameters for the galactic dwarf spheroidals,” Monthly Notices of the Royal Astronomical Society, vol. 277, pp. 1354–1378, 1995. View at Google Scholar
  47. R. R. Munoz, S. R. Majewski, S. Zaggia et al., “Exploring halo substructure with giant stars. XI. The tidal tails of the Carina dwarf spheroidal galaxy and the discovery of magellanic cloud stars in the Carina foreground,” The Astrophysical Journal, vol. 649, no. 1, pp. 201–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Smolcic, D. B. Zucker, E. F. Bell et al., “Improved photometry of sloan digital sky survey crowded-field images: structure and dark matter content in the dwarf spheroidal galaxy Leo I,” The Astronomical Journal, vol. 134, no. 5, pp. 1901–1915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. G. Coleman and J. T. A. de Jong, “A deep survey of the Fornax dSph. I. Star formation history,” The Astrophysical Journal, vol. 685, no. 2, pp. 933–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. H.-S. Zhao, “Analytical dynamical models for double power-law galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 287, no. 3, pp. 525–537, 1997. View at Google Scholar · View at Scopus
  51. J. F. Navarro, A. Ludlow, V. Springel et al., “The diversity and similarity of cold dark matter halos,” http://arxiv.org/abs/0810.1522.
  52. L. E. Strigari, J. S. Bullock, and M. Kaplinghat, “Determining the nature of dark matter with astrometry,” The Astrophysical Journal, vol. 657, no. 1, part 2, pp. L1–L4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. G. Walker, M. Mateo, E. W. Olszewski, J. Peñarrubia, N. Wyn Evans, and G. Gilmore, “A universal mass profile for dwarf spheroidal galaxies?” The Astrophysical Journal, vol. 704, pp. 1274–1287, 2009. View at Publisher · View at Google Scholar
  54. J. Wolf, G. D. Martinez, J. S. Bullock et al., “Accurate masses for dispersion-supported galaxies,” http://arxiv.org/abs/0908.2995.
  55. H. Jeffreys, Theory of Probability, Oxford University Press, Oxford, UK, 1961.
  56. V. Springel, J. Wang, M. Vogelsberger et al., “The Aquarius Project: the subhaloes of galactic haloes,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 4, pp. 1685–1711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. I. Wilkinson, J. Kleyna, N. W. Evans, and G. Gilmore, “Dark matter in dwarf spheroidals - I. Models,” Monthly Notices of the Royal Astronomical Society, vol. 330, no. 4, pp. 778–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. S. R. Majewski, J. Bullock, A. Burkert et al., “Galactic dynamics and local dark matter,” in SIM Lite Astrometric Observatory, American Astronomical Society, Washington, DC, USA, 2009. View at Google Scholar
  59. E. L. Lokas, S. Kazantzidis, J. Klimentowski, L. Mayer, and S. Callegari, “The stellar structure and kinematics of dwarf spheroidal galaxies formed by tidal stirring,” http://arxiv.org/abs/0906.5084.