Table of Contents Author Guidelines Submit a Manuscript
Advances in Astronomy
Volume 2012, Article ID 946368, 11 pages
http://dx.doi.org/10.1155/2012/946368
Research Article

Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

1Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraβe, 85748 Garching, Germany
2Universitäts-Sternwarte München, Scheinerstraβe 1, 81679 München, Germany
3European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile

Received 6 October 2011; Revised 1 December 2011; Accepted 6 December 2011

Academic Editor: Isabelle Gavignaud

Copyright © 2012 Peter Erwin and Dimitri Alexei Gadotti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes and their host galaxies,” The Astrophysical Journal, vol. 539, no. 1, pp. L9–L12, 2000. View at Google Scholar · View at Scopus
  2. K. Gebhardt, R. Bender, G. Bower et al., “A relationship between nuclear black hole mass and galaxy velocity dispersion,” The Astrophysical Journal, vol. 539, no. 1, pp. L13–L16, 2000. View at Google Scholar · View at Scopus
  3. A. Marconi and L. K. Hunt, “The relation between black hole mass, bulge mass, and near-Infrared luminosity,” The Astrophysical Journal, vol. 589, no. 1, pp. L21–L24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Häring and H.-W. Rix, “On the black hole mass-bulge mass relation,” The Astrophysical Journal, vol. 604, pp. L89–L92, 2004. View at Google Scholar
  5. C. M. Carollo, M. Stiavelli, P. T. de Zeeuw, and J. Mack, “Spiral galaxies with WFPC2. I. Nuclear morphology, bulges, star clusters, and surface brightness profiles,” The Astronomical Journal, vol. 114, no. 6, pp. 2366–2380, 1997. View at Google Scholar · View at Scopus
  6. T. Böker, S. Laine, R. P. van der Marel et al., “A hubble space telescope census of nuclear star clusters in late-type spiral galaxies. I. Observations and image analysis,” The Astronomical Journal, vol. 123, no. 3, pp. 1389–1410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Böker, “Properties of nuclear star clusters,” Journal of Physics Conference Series, vol. 131, no. 1, Article ID 012043, 2008. View at Publisher · View at Google Scholar
  8. E. H. Wehner and W. E. Harris, “From supermassive black holes to dwarf elliptical nuclei: a mass continuum,” The Astrophysics Journal, vol. 644, pp. L17–L20, 2006. View at Google Scholar
  9. L. Ferrarese, P. Côté, E. Dalla Bontà et al., “A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies,” The Astrophysical Journal Letters, vol. 644, no. 1, pp. L21–L24, 2006. View at Publisher · View at Google Scholar
  10. P. Côté, S. Piatek, L. Ferrarese et al., “The ACS virgo cluster survey. VIII. The nuclei of early-type galaxies,” The Astrophysical Journal Supplement Series, vol. 165, no. 1, pp. 57–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Rossa, R. P. van der Marel, T. Böker et al., “Hubble space telescope stis spectra of nuclear star clusters in spiral galaxies: dependence of age and mass on hubble type,” The Astronomical Journal, vol. 132, no. 3, pp. 1074–1099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Balcells, A. W. Graham, and R. F. Peletier, “Galactic bulges from hubble space telescope NICMOS observations: central galaxian objects, and nuclear profile slopes,” The Astrophysical Journal, vol. 665, no. 2, pp. 1084–1103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. McLaughlin, A. R. King, and S. Nayakshin, “The M-σ relation for nucleated galaxies,” The Astrophysical Journal, vol. 650, no. 1, pp. L37–L40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Li, Z. Haiman, and M.-M. Mac Low, “Correlations between central massive objects and their host galaxies: from bulgeless spirals to ellipticals,” The Astrophysical Journal, vol. 663, no. 1 I, pp. 61–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nayakshin, M. I. Wilkinson, and A. King, “Competitive feedback in galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 398, pp. L54–L57, 2009. View at Google Scholar
  16. B. Devecchi, M. Volonteri, M. Colpi, and F. Haardt, “High-redshift formation and evolution of central massive objects - I. Model description,” Monthly Notices of the Royal Astronomical Society, vol. 409, no. 3, pp. 1057–1067, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kormendy and K. Gebhardt, “Supermassive black holes in galactic nuclei,” in 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler and H. Martel, Eds., vol. 586 of American Institute of Physics Conference Series, pp. 363–381, 2001. View at Google Scholar
  18. J. Kormendy, R. Bender, and M. E. Cornell, “Supermassive black holes do not correlate with galaxy disks or pseudobulges,” Nature, vol. 469, pp. 374–376, 2011. View at Google Scholar
  19. C. M. Carollo, M. Stiavelli, and J. Mack, “Spiral galaxies with WFPC2. II. The nuclear properties of 40 objects,” The Astronomical Journal, vol. 116, no. 1, pp. 68–84, 1998. View at Google Scholar · View at Scopus
  20. K. Gültekin, D. O. Richstone, K. Gebhardt et al., “The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter,” The Astrophysical Journal, vol. 698, no. 1, pp. 198–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Walcher, R. P. van der Marel, D. Mclaughlin et al., “Masses of star clusters in the nuclei of bulgeless spiral galaxies,” The Astrophysical Journal, vol. 618, no. 1, pp. 237–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. Seth, J. J. Dalcanton, P. W. Hodge, and V. P. Debattista, “Clues to nuclear star cluster formation from edge-on spirals,” The Astronomical Journal, vol. 132, no. 6, pp. 2539–2555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Ho and A. V. Filippenko, “High-dispersion spectroscopy of a luminous, young star cluster in NGC 1705: further evidence for present-day formation of globular clusters,” The Astrophysical Journal, vol. 472, no. 2, pp. 600–610, 1996. View at Google Scholar · View at Scopus
  24. T. Böker, R. P. van der Marel, and W. D. Vacca, “CO band head spectroscopy of IC 342: mass and age of the nuclear star cluster 1,” The Astronomical Journal, vol. 118, no. 2, pp. 831–842, 1999. View at Google Scholar · View at Scopus
  25. J. Kormendy and R. Bender, “The double nucleus and central black hole of M31,” The Astrophysical Journal, vol. 522, no. 2, pp. 772–792, 1999. View at Google Scholar · View at Scopus
  26. L. D. Matthews, J. S. Gallagher III, J. E. Krist et al., “WFPC2 observations of compact star cluster nuclei in low-luminosity spiral galaxies,” The Astronomical Journal, vol. 118, no. 1, pp. 208–235, 1999. View at Google Scholar · View at Scopus
  27. K. Gebhardt, T. R. Lauer, J. Kormendy et al., “M33: a galaxy with no supermassive black hole,” The Astronomical Journal, vol. 122, no. 5, pp. 2469–2476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Barth, L. E. Strigari, M. C. Bentz, J. E. Greene, and L. C. Ho, “Dynamical constraints on the masses of the nuclear star cluster and black hole in the late-type spiral galaxy NGC 3621,” The Astrophysical Journal, vol. 690, no. 1, pp. 1031–1044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. C. Seth, M. Cappellari, N. Neumayer et al., “The NGC 404 nucleus: star cluster and possible intermediate-mass black hole,” The Astrophysical Journal, vol. 714, no. 1, pp. 713–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Kormendy, N. Drory, R. Bender, and M. E. Cornell, “Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering,” The Astrophysical Journal, vol. 723, no. 1, pp. 54–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Launhardt, R. Zylka, and P. G. Mezger, “The nuclear bulge of the galaxy III. Large-scale physical characteristics of stars and interstellar matter,” Astronomy and Astrophysics, vol. 384, no. 1, pp. 112–139, 2002. View at Google Scholar · View at Scopus
  32. T. H. Jarrett, T. Chester, R. Cutri, S. Schneider, M. Skrutskie, and J. P. Huchra, “2MASS extended source catalog: overview and algorithms,” The Astronomical Journal, vol. 119, no. 5, pp. 2498–2531, 2000. View at Google Scholar · View at Scopus
  33. S. Malhotra, D. N. Spergel, J. E. Rhoads, and L. I. Jing, “The milky way, local galaxies, and the infrared tully-fisher relation,” The Astrophysical Journal, vol. 473, no. 2, pp. 687–691, 1996. View at Google Scholar · View at Scopus
  34. E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Weinberg, “The optical and near-infrared properties of galaxies. I. Luminosity and stellar MASS functions,” The Astrophysical Journal Letters, vol. 149, no. 2, pp. 289–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. G. York, J. Adelman, J. E. Anderson Jr. et al., “The sloan digital sky survey: technical summary,” The Astronomical Journal, vol. 120, no. 3, pp. 1579–1587, 2000. View at Publisher · View at Google Scholar
  36. R. E. de Souza, D. A. Gadotti, and S. dos Anjos, “BUDDA: a new two-dimensional Bulge/Disk decomposition code for detailed structural analysis of galaxies,” The Astrophysical Journal Supplement Series, vol. 153, no. 2, pp. 411–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Gadotti, “Image decomposition of barred galaxies and AGN hosts,” Monthly Notices of the Royal Astronomical Society, vol. 384, no. 1, pp. 420–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Hu, “The black hole mass-stellar velocity dispersion correlation: bulges versus pseudo-bulges,” Monthly Notices of the Royal Astronomical Society, vol. 386, no. 4, pp. 2242–2252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Nowak, J. Thomas, P. Erwin, R. P. Saglia, R. Bender, and R. I. Davies, “Do black hole masses scale with classical bulge luminosities only? The case of the two composite pseudo-bulge galaxies NGC 3368 and NGC 3489,” Monthly Notices of the Royal Astronomical Society, vol. 403, no. 2, pp. 646–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Dehnen and J. Binney, “Mass models of the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 294, no. 3, pp. 429–438, 1998. View at Google Scholar · View at Scopus
  41. A. Klypin, H. Zhao, and R. S. Somerville, “ΛCDM-based models for the Milky Way and M31. I. Dynamical models,” The Astrophysical Journal, vol. 573, no. 2, pp. 597–613, 2002. View at Google Scholar · View at Scopus
  42. C. Flynn, J. Holmberg, L. Portinari, B. Fuchs, and H. Jahreiß, “On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 3, pp. 1149–1160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. B. Eskridge, J. A. Frogel, R. W. Pogge et al., “Near-infrared and optical morphology of spiral galaxies,” The Astrophysical Journal Supplement Series, vol. 143, no. 1, pp. 73–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. G. D’Agostini, “Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications,” Physics, 2005. View at Google Scholar
  45. C. Guidorzi, F. Frontera, E. Montanari et al., “The slope of the gamma-ray burst variability/peak luminosity correlation,” Monthly Notices of the Royal Astronomical Society, vol. 371, pp. 843–851, 2006. View at Google Scholar
  46. O. Y. Gnedin, D. H. Weinberg, J. Pizagno, F. Prada, and H.-W. Rix, “Dark matter halos of disk galaxies: constraints from the Tully-Fisher relation,” The Astrophysical Journal, vol. 671, no. 2, pp. 1115–1134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Bland-Hawthorn, M. Vlajić, K. C. Freeman, and B. T. Draine, “NGC 300: an extremely faint, outer stellar disk observed to 10 scale lengths,” The Astrophysical Journal, vol. 629, no. 1, pp. 239–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Seth, M. Agüeros, D. Lee, and A. Basu-Zych, “The coincidence of nuclear star clusters and active galactic nuclei,” The Astrophysical Journal, vol. 678, no. 1, pp. 116–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Gillessen, F. Eisenhauer, S. Trippe et al., “Monitoring stellar orbits around the massive black hole in the galactic center,” The Astrophysical Journal, vol. 692, pp. 1075–1109, 2009. View at Google Scholar
  50. R. Bender, J. Kormendy, G. Bower et al., “HST STIS spectroscopy of the triple nucleus of M31: two nested disks in keplerian rotation around a supermassive black hole,” The Astrophysical Journal, vol. 631, no. 1, pp. 280–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. E. K. Verolme, M. Cappellari, Y. Copin et al., “A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass,” Monthly Notices of the Royal Astronomical Society, vol. 335, pp. 517–525, 2002. View at Google Scholar
  52. D. Krajnović, R. M. McDermid, M. Cappellari, and R. L. Davies, “Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics,” Monthly Notices of the Royal Astronomical Society, vol. 399, no. 4, pp. 1839–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Gebhardt, D. Richstone, S. Tremaine et al., “Axisymmetric dynamical models of the central regions of galaxies,” The Astrophysical Journal, vol. 583, no. 1, pp. 92–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. G. A. Bower, R. F. Green, R. Bender et al., “Evidence of a supermassive black hole in the galaxy NGC 1023 from the nuclear stellar dynamics,” The Astrophysical Journal, vol. 550, no. 1, pp. 75–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Lodato and G. Bertin, “Non-Keplerian rotation in the nucleus of NGC 1068: evidence for a massive accretion disk?” Astronomy and Astrophysics, vol. 398, no. 2, pp. 517–524, 2003. View at Google Scholar · View at Scopus
  56. J. W. Atkinson, J. L. Collett, A. Marconi et al., “Supermassive black hole mass measurements for NGC 1300 and 2748 based on hubble space telescope emission-line gas kinematics,” Monthly Notices of the Royal Astronomical Society, vol. 359, pp. 504–520, 2005. View at Google Scholar
  57. S. P. Rusli, J. Thomas, P. Erwin, R. P. Saglia, N. Nowak, and R. Bender, “The central black hole mass of the high-σ but low-bulge-luminosity lenticular galaxy NGC 1332,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 2, pp. 1223–1236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Nowak, R. P. Saglia, J. Thomas, R. Bender, R. I. Davies, and K. Gebhardt, “The supermassive black hole of FornaxA,” Monthly Notices of the Royal Astronomical Society, vol. 391, pp. 1629–1649, 2008. View at Google Scholar
  59. R. C. W. Houghton, J. Magorrian, M. Sarzi, N. Thatte, R. L. Davies, and D. Krajnović, “The central kinematics of NGC 1399 measured with 14 pc resolution,” Monthly Notices of the Royal Astronomical Society, vol. 367, no. 1, pp. 2–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Sarzi, H.-W. Rix, J. C. Shields et al., “Supermassive black holes in bulges,” The Astrophysical Journal, vol. 550, no. 1, pp. 65–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Devereux, H. Ford, Z. Tsvetanov, and G. Jacoby, “STIS spectroscopy of the central 10 parsecs of M81: evidence for a massive black hole,” The Astronomical Journal, vol. 125, no. 3, pp. 1226–1235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. R. I. Davies, J. Thomas, R. Genzel et al., “The star-forming torus and stellar dynamical black hole mass in the Seyfert 1 nucleus of NGC 3227,” The Astrophysical Journal, vol. 646, no. 2, pp. 754–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. A. J. Barth, M. Sarzi, H.-W. Rix, L. C. Ho, A. V. Filippenko, and W. L. W. Sargent, “Evidence for a supermassive black hole in the S0 galaxy NGC 3245,” The Astrophysical Journal, vol. 555, no. 2, pp. 685–708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. P. T. Kondratko, L. J. Greenhill, and J. M. Moran, “The parsec-scale accretion disk in NGC 3393,” The Astrophysical Journal, vol. 678, no. 1, pp. 87–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Gültekin, D. O. Richstone, K. Gebhardt et al., “A quintet of black hole mass determinations,” The Astrophysical Journal, vol. 695, pp. 1577–1590, 2009. View at Google Scholar
  66. G. de Francesco, A. Capetti, and A. Marconi, “Measuring supermassive black holes with gas kinematics: the active so galaxy NGC 3998,” Astronomy and Astrophysics, vol. 460, no. 2, pp. 439–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. E. K. S. Hicks and M. A. Malkan, “Circumnuclear gas in seyfert 1 galaxies: morphology, kinematics, and direct measurement of black hole masses,” The Astrophysical Journal Supplement Series, vol. 174, no. 1, pp. 31–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Miyoshi, J. Moran, J. Herrnstein et al., “Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258,” Nature, vol. 373, no. 6510, pp. 127–129, 1995. View at Google Scholar · View at Scopus
  69. L. Ferrarese, H. C. Ford, and W. Jaffe, “Evidence for a massive black hole in the active galaxy NGC 4261 from bubble space telescope images and spectra,” The Astrophysical Journal, vol. 470, no. 1, pp. 444–459, 1996. View at Google Scholar · View at Scopus
  70. N. Cretton and F. C. van den Bosch, “Evidence for a massive black hole in the S0 galaxy NGC 4342,” The Astrophysical Journal, vol. 514, no. 2, pp. 704–724, 1999. View at Google Scholar · View at Scopus
  71. J. L. Walsh, A. J. Barth, and M. Sarzi, “The supermassive black hole in M84 revisited,” The Astrophysical Journal, vol. 721, no. 1, pp. 762–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Macchetto, A. Marconi, D. J. Axon, A. Capetti, W. Sparks, and P. Crane, “The supermassive black hole of M87 and the kinematics of its associated gaseous disk,” The Astrophysical Journal, vol. 489, no. 2, pp. 579–600, 1997. View at Google Scholar · View at Scopus
  73. N. Nowak, R. P. Saglia, J. Thomas et al., “The supermassive black hole in NGC 4486a detected with SINFONI at the very large telescope,” Monthly Notices of the Royal Astronomical Society, vol. 379, no. 3, pp. 909–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Shen and K. Gebhardt, “The supermassive black hole and dark matter halo of NGC 4649 (M60),” The Astrophysical Journal, vol. 711, pp. 484–494, 2010. View at Google Scholar
  75. G. de Francesco, A. Capetti, and A. Marconi, “Measuring supermassive black holes with gas kinematics. II. The LINERs IC 989, NGC 5077, and NGC 6500,” Astronomy & Astrophysics, vol. 479, pp. 355–363, 2008. View at Google Scholar
  76. N. Neumayer, M. Cappellari, J. Reunanen et al., “The central parsecs of centaurus A: high-excitation gas, a molecular disk, and the mass of the black hole,” The Astrophysical Journal, vol. 671, no. 2, pp. 1329–1344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Capetti, A. Marconi, D. Macchetto, and D. Axon, “The supermassive black hole in the Seyfert 2 galaxy NGC 5252,” Astronomy and Astrophysics, vol. 431, no. 2, pp. 465–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Ferrarese and H. C. Ford, “Nuclear disks of gas and dust in early-type galaxies and the hunt for massive black holes: hubble Space Telescope observations of NGC 6251,” The Astrophysical Journal, vol. 515, no. 2, pp. 583–602, 1999. View at Google Scholar · View at Scopus
  79. R. P. van der Marel and F. C. van den Bosch, “Evidence for a 3 × 108 M⊙ black hole in NGC 7052 from hubble space telescope observations of the nuclear gas disk,” The Astronomical Journal, vol. 116, no. 5, pp. 2220–2236, 1998. View at Google Scholar · View at Scopus
  80. M. Cappellari, E. K. Verolme, R. P. van der Marel et al., “The counterrotating core and the black hole mass of IC 1459,” The Astrophysical Journal, vol. 578, no. 2, pp. 787–805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Dalla Bontà, L. Ferrarese, E. M. Corsini et al., “The high-mass end of the black hole mass function: mass estimates in brightest cluster galaxies,” The Astrophysical Journal, vol. 690, no. 1, pp. 537–559, 2009. View at Publisher · View at Google Scholar · View at Scopus