Table of Contents Author Guidelines Submit a Manuscript
Advances in Astronomy
Volume 2013 (2013), Article ID 596501, 14 pages
http://dx.doi.org/10.1155/2013/596501
Review Article

Properties of the HII Regions Derived Using Integral Field Spectroscopy

1Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, Apartado 3004, 18080 Granada, Spain
2Centro Astronómico Hispano Alemán, Calar Alto (CSIC-MPG), C/Jesús Durbán Remón 2-2, 04004 Almería, Spain
3Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401/1a, 141 00 Prague, Czech Republic

Received 15 August 2013; Accepted 4 November 2013

Academic Editor: Polychronis Papaderos

Copyright © 2013 Sebastian F. Sánchez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Á. R. López-Sánchez, “Massive star formation in Wolf-Rayet galaxies: V. Star-formation rates, masses and the importance of galaxy interactions,” Astronomy & Astrophysics, vol. 521, article A63, 31 pages, 2010. View at Publisher · View at Google Scholar
  2. Á. R. López-Sánchez and C. Esteban, “Massive star formation in Wolf-Rayet galaxies: IV. Colours, chemical-composition analysis and metallicity—luminosity relations,” Astronomy & Astrophysics, vol. 517, article A85, 28 pages, 2010. View at Publisher · View at Google Scholar
  3. J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, and S. Torres-Peimbert, “Chemical composition and evolution of irregular and blue compact galaxies,” Astronomy & Astrophysics, vol. 80, pp. 155–166, 1979. View at Google Scholar
  4. E. D. Skillman, “Empirical oxygen abundances and physical conditions for relatively low abundance Hɪɪ regions,” Astrophysical Journal, vol. 347, pp. 883–893, 1989. View at Google Scholar
  5. M. B. Vila-Costas and M. G. Edmunds, “The relation between abundance gradients and the physical properties of spiral galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 259, no. 1, pp. 121–145, 1992. View at Google Scholar
  6. D. Zaritsky, R. C. Kennicutt Jr., and J. P. Huchra, “Hɪɪ regions and the abundance properties of spiral galaxies,” Astrophysical Journal Letters, vol. 420, no. 1, pp. 87–109, 1994. View at Google Scholar · View at Scopus
  7. C. A. Tremonti, T. M. Heckman, G. Kauffmann et al., “The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey,” Astrophysical Journal Letters, vol. 613, no. 2, pp. 898–913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Garnett, “The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies,” Astrophysical Journal Letters, vol. 581, no. 2, pp. 1019–1031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. I. Diaz, “Abundance gradients in disc galaxies and chemical evolution models,” in Evolutionary Phenomena in Galaxies, J. E. Beckman and B. E. J. Pagel, Eds., pp. 377–397, 1989. View at Google Scholar
  10. P. Martin and J.-R. Roy, “The influence of bars on the chemical composition of spiral galaxies,” Astrophysical Journal Letters, vol. 424, no. 2, pp. 599–614, 1994. View at Google Scholar · View at Scopus
  11. J. Moustakas and R. C. Kennicutt Jr., “An integrated spectrophotometric survey of nearby star-forming galaxies,” Astrophysical Journal Supplement Series, vol. 164, no. 1, pp. 81–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. F. Rosales-Ortega, R. C. Kennicutt Jr., S. F. Sánchez et al., “PINGS: the PPAK IFS nearby galaxies survey,” Monthly Notices of the Royal Astronomical Society, vol. 405, pp. 735–758, 2010. View at Google Scholar
  13. S. F. Sánchez, R. C. Kennicutt Jr., A. Gil de Paz et al., “CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation,” Astronomy & Astrophysics, vol. 538, article A8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. F. Sánchez, F. F. Rosales-Ortega, R. A. Marino et al., “Integral field spectroscopy of a sample of nearby galaxies: II. Properties of the H II regions,” Astronomy & Astrophysics, vol. 546, article A2, 28 pages, 2012. View at Publisher · View at Google Scholar
  15. S. F. Sánchez, N. Cardiel, M. A. W. Verheijen et al., “PPAK integral field spectroscopy survey of the Orion nebula,” Astronomy & Astrophysics, vol. 465, no. 1, pp. 207–217, 2007. View at Publisher · View at Google Scholar
  16. A. Fernández-Martín, J. M. Vílchez, E. Pérez-Montero et al., “Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance,” Astronomy & Astrophysics, vol. 554, article A104, 15 pages, 2013. View at Publisher · View at Google Scholar
  17. J. B. Kaler, “A catalog of relative emission line intensities observed in planetary and diffuse nebulae,” Astrophysical Journal Supplement Series, vol. 31, no. 688, p. 517, 1976. View at Publisher · View at Google Scholar
  18. J. A. Baldwin, G. J. Ferland, P. G. Martin et al., “Physical conditions in the orion nebula and an assessment of its helium abundance,” Astrophysical Journal Letters, vol. 374, no. 2, pp. 580–609, 1991. View at Google Scholar · View at Scopus
  19. D. E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, Mill Valley, Calif, USA, 1989, Research supported by the University of California, John Simon Guggenheim Memorial Foundation, University of Minnesota et al.
  20. B. E. J. Pagel, M. G. Edmunds, D. E. Blackwell, M. S. Chun, and G. Smith, “On the composition of H II regions in southern galaxies. I—NGC 300 and 1365,” Monthly Notices of the Royal Astronomical Society, vol. 189, pp. 95–113, 1979. View at Google Scholar
  21. R. W. Pogge, J. M. Owen, and B. Atwood, “Imaging spectrophotometry of the Orion Nebula core. I—emission-line mapping and physical conditions,” Astrophysical Journal, vol. 399, no. 1, pp. 147–158, 1992, Erratum in “imaging spectrophotometry of the Orion Nebula core. I—emission-line mapping and physical conditions”, Astrophysical Journal, vol. 408, p. 758, 1993. View at Publisher · View at Google Scholar
  22. S. Veilleux and D. E. Osterbrock, “Spectral classification of emission-line galaxies,” Astrophysical Journal Supplement Series, vol. 63, pp. 295–310, 1987. View at Publisher · View at Google Scholar
  23. J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters for the emission-line spectra of extragalactic objects,” Publications of the Astronomical Society of the Pacific, vol. 93, pp. 5–19, 1981. View at Google Scholar
  24. R. Cid Fernandes, G. Stasińska, A. Mateus, and N. Vale Asari, “A comprehensive classification of galaxies in the Sloan Digital Sky Survey: how to tell true from fake AGN?” Monthly Notices of the Royal Astronomical Society, vol. 413, no. 3, pp. 1687–1699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Kehrig, A. Monreal-Ibero, P. Papaderos et al., “The ionized gas in the CALIFA early-type galaxies: I. Mapping two representative cases: NGC 6762 and NGC 5966,” Astronomy & Astrophysics, vol. 540, article A11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Kauffmann, T. M. Heckman, C. Tremonti et al., “The host galaxies of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 4, pp. 1055–1077, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena, “Theoretical modeling of starburst galaxies,” Astrophysical Journal Letters, vol. 556, no. 1, pp. 121–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. L. J. Kewley, B. Groves, G. Kauffmann, and T. Heckman, “The host galaxies and classification of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 3, pp. 961–976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. Kennicutt Jr., W. C. Keel, and C. A. Blaha, “A comparison of the physical conditions in nuclear, hotspot, and disk H II regions,” Astronomical Journal, vol. 97, pp. 1022–1035, 1989. View at Publisher · View at Google Scholar
  30. L. C. Ho, A. V. Filippenko, and W. L. W. Sargent, “Properties of H 1 regions in the centers of nearby galaxies,” Astrophysical Journal Letters, vol. 487, no. 2, pp. 579–590, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. G. Allen, B. A. Groves, M. A. Dopita, R. S. Sutherland, and L. J. Kewley, “The mappings III library of fast radiative shock models,” The Astrophysical Journal Supplement Series, vol. 178, no. 1, pp. 20–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. Levesque, L. J. Kewley, and K. L. Larson, “Theoretical modeling of star-forming galaxies. I. Emission-line diagnostic grids for local and low-metallicity galaxies,” Astronomical Journal, vol. 139, no. 2, pp. 712–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. A. Groves, M. A. Dopita, and R. S. Sutherland, “Dusty, radiation pressure-dominated photoionization. II multiwavelength emission line diagnostics for narrow-line regions,” Astrophysical Journal Supplement Series, vol. 153, no. 1, pp. 75–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Cid Fernandes, G. Stasińska, M. S. Schlickmann et al., “Alternative diagnostic diagrams and the “forgotten” population of weak line galaxies in the SDSS,” Monthly Notices of the Royal Astronomical Society, vol. 403, no. 2, pp. 1036–1053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. F. Sanchez, F. F. Rosales-Ortega, B. Jungwiert et al., “Mass-metallicity relation explored with CALIFA. I. Is there a dependence on the star-formation rate?” Astronomy & Astrophysics, vol. 554, article A58, 8 pages, 2013. View at Publisher · View at Google Scholar
  36. P. Papaderos, J. M. Gomes, J. M. Vilchez et al., “Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies,” Astronomy & Astrophysics, vol. 555, article L1, 5 pages, 2013. View at Publisher · View at Google Scholar
  37. R. C. Kennicutt Jr., “The global schmidt law in star-forming galaxies,” Astrophysical Journal Letters, vol. 498, no. 2, pp. 541–552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Dopita, L. J. Kewley, C. A. Heisler, and R. S. Sutherland, “A theoretical recalibration of the extragalactic H II region sequence,” Astrophysical Journal Letters, vol. 542, no. 1, pp. 224–234, 2000. View at Google Scholar · View at Scopus
  39. M. Fioc and B. Rocca-Volmerange, “PEGASE: a UV to NIR spectral evolution model of galaxies: application to the calibration of bright galaxy counts,” Astronomy & Astrophysics, vol. 326, no. 3, pp. 950–962, 1997. View at Google Scholar · View at Scopus
  40. R. Terlevich, S. Silich, D. Rosa-González, and E. Terlevich, “How old are H II galaxies?” Monthly Notices of the Royal Astronomical Society, vol. 348, no. 4, pp. 1191–1196, 2004. View at Google Scholar · View at Scopus
  41. S. F. Sánchez, F. F. Rosales-Ortega, R. C. Kennicutt Jr. et al., “PPAK wide-field integral field spectroscopy of NGC 628—I. The largest spectroscopic mosaic on a single galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 313–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. F. Rosales-Ortega, A. I. Díaz, R. C. Kennicutt Jr., and S. F. Sánchez, “PPAK wide-field Integral field spectroscopy of NGC 628—II. Emission line abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 3, pp. 2439–2474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Mármol-Queraltó, S. F. Sánchez, R. A. Marino et al., “Integral field spectroscopy of a sample of nearby galaxies,” Astronomy & Astrophysics, vol. 534, article A8, 17 pages, 2011. View at Publisher · View at Google Scholar
  44. K. Viironen, S. F. Sánchez, E. Marmol-Queraltó et al., “Spatially resolved properties of the grand-design spiral galaxy UGC 9837: a case for high-redshift 2-D observations,” Astronomy & Astrophysics, vol. 538, article A144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. F. F. Rosales-Ortega, S. F. Sánchez, J. Iglesias-Páramo et al., “A new scaling relation for H II regions in spiral galaxies: unveiling the true nature of the mass-metallicity relation,” Astrophysical Journal, vol. 756, no. 2, p. L31, 2012. View at Google Scholar
  46. I. Trujillo, G. Rudnick, H.-W. Rix et al., “The luminosity-size and mass-size relations of galaxies out to z~ 31,” Astrophysical Journal Letters, vol. 604, no. 2, pp. 521–533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Barden, H. W. Rix, R. S. Somerville et al., “GEMS: the surface brightness and surface mass density evolution of disk galaxies,” Astrophysical Journal, vol. 635, no. 2, pp. 959–981, 2005. View at Publisher · View at Google Scholar
  48. I. Trujillo, N. M. Förster Schreiber, G. Rudnick et al., “The size evolution of galaxies since z~ 3: combining SDSS, GEMS, and FIRES,” Astrophysical Journal Letters, vol. 650, no. 1, pp. 18–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. Muñoz-Mateos, A. G. de Paz, S. Boissier et al., “Specific star formation rate profiles in nearby spiral galaxies: quantifying the inside-out formation of disks,” Astrophysical Journal Letters, vol. 658, no. 2, pp. 1006–1026, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. L. A. MacArthur, J. J. González, and S. Courteau, “Stellar population and kinematic profiles in spiral bulges and discs: population synthesis of integrated spectra,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 1, pp. 28–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Sánchez-Blázquez, P. Ocvirk, B. K. Gibson, I. Pérez, and R. F. Peletier, “Star formation history of barred disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 1, pp. 709–731, 2011. View at Publisher · View at Google Scholar
  52. E. Pérez, R. Cid Fernandes, R. M. González Delgado et al., “The evolution of galaxies resolved in space and time: a view of inside-out growth from the califa survey,” Astrophysical Journal, vol. 764, no. 1, p. L1, 2013. View at Publisher · View at Google Scholar
  53. R. M. González Delgado, E. Pérez, R. Cid Fernandes et al., “The evolution of galaxies resolved in space and time: a view of inside-out growth from the CALIFA survey,” Astrophysical Journal Letters, vol. 764, no. 1, article L1, 6 pages, 2013. View at Publisher · View at Google Scholar
  54. S. Boissier and N. Prantzos, “Chemo-spectrophotometric evolution of spiral galaxies—I. The model and the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 307, no. 4, pp. 857–876, 1999. View at Google Scholar · View at Scopus
  55. S. Boissier and N. Prantzos, “Chemo-spectrophotometric evolution of spiral galaxies—II. Main properties of present-day disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 312, no. 2, pp. 398–416, 2000. View at Google Scholar · View at Scopus
  56. F. Bresolin, E. Ryan-Weber, R. C. Kennicutt Jr., and Q. Goddard, “The flat oxygen abundance gradient in the extended disk of M83,” Astrophysical Journal, vol. 695, no. 1, pp. 580–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Yoachim, R. Roškar, and V. P. Debattista, “Integral field unit spectroscopy of the stellar disk truncation region of NGC 6155,” Astrophysical Journal Letters, vol. 716, no. 1, pp. L4–L8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. R. A. Marino, A. Gil de Paz, A. Castillo-Morales et al., “Integral field spectroscopy and multi-wavelength imaging of the nearby spiral galaxy NGC 5668*: an unusual flattening in metallicity gradient,” Astrophysical Journal, vol. 754, no. 1, p. 61, 2012. View at Publisher · View at Google Scholar
  59. F. Bresolin, R. C. Kennicutt Jr., and E. Ryan-Weber, “Gas metallicities in the extended disks of NGC 1512 and NGC 3621. Chemical signatures of metal mixing or enriched gas accretion?” Astrophysical Journal, vol. 750, no. 2, article 122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Gil de Paz, B. F. Madore, S. Boissier et al., “Discovery of an extended ultraviolet disk in the nearby galaxy NGC 4625,” Astrophysical Journal, vol. 627, no. 1, pp. L29–L32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. D. A. Thilker, L. Bianchi, G. Meurer et al., “A search for extended ultraviolet disk (XUV-disk) galaxies in the local universe,” Astrophysical Journal Supplement Series, vol. 173, no. 2, pp. 538–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Vlajić, J. Bland-Hawthorn, and K. C. Freeman, “The abundance gradient in the extremely faint outer disk of NGC 300,” Astrophysical Journal, vol. 697, no. 1, p. 361, 2009. View at Publisher · View at Google Scholar
  63. C. ESteban, L. Carigi, M. V. F. Copetti et al., “NGC 2579 and the carbon and oxygen abundance gradients beyond the solar circle,” Monthly Notices of the Royal Astronomical Society, vol. 433, no. 1, pp. 382–393, 2013. View at Publisher · View at Google Scholar
  64. B. Husemann, K. Jahnke, S. F. Sánchez et al., “CALIFA, the Calar Alto Legacy Integral Field Area survey. II. First public data release,” Astronomy & Astrophysics, vol. 549, article A87, 25 pages, 2013. View at Publisher · View at Google Scholar
  65. M. A. Lara-López, J. Cepa, A. Bongiovanni et al., “A fundamental plane for field star-forming galaxies,” Astronomy & Astrophysics, vol. 521, article L53, 5 pages, 2010. View at Publisher · View at Google Scholar
  66. F. Mannucci, G. Cresci, R. Maiolino, A. Marconi, and A. Gnerucci, “A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 4, pp. 2115–2127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. F. Sanchez, F. F. Rosales-Ortega, J. Iglesias-Paramo et al., “A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA,” http://arxiv.org/abs/1311.7052.
  68. T. Tsujimoto, J. Bland-Hawthorn, and K. C. Freeman, “Evidence of early enrichment of the galactic disk by large-scale winds,” Publications of the Astronomical Society of Japan, vol. 62, no. 2, pp. 447–456, 2010. View at Google Scholar · View at Scopus
  69. F. Matteucci and P. Francois, “Galactic chemical evolution—abundance gradients of individual elements,” Monthly Notices of the Royal Astronomical Society, vol. 239, pp. 885–904, 1989. View at Google Scholar
  70. B. E. J. Pagel and B. E. Patchett, “Metal abundances in nearby stars and the chemical history of the solar neighborhood,” Monthly Notices of the Royal Astronomical Society, vol. 172, pp. 13–40, 1975. View at Google Scholar
  71. B. K. Gibson, Y. Fenner, A. Renda, D. Kawata, and H.-C. Lee, “Galactic chemical evolution,” Publications of the Astronomical Society of Australia, vol. 20, no. 4, pp. 401–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. R. B. Larson, “Effects of supernovae on the early evolution of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 169, pp. 229–246, 1974. View at Google Scholar
  73. J. Silk, “Dissipative processes in galaxy formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 11, pp. 4835–4839, 1993. View at Google Scholar · View at Scopus
  74. S. Veilleux, G. Cecil, and J. Bland-Hawthorn, “Galactic winds,” Annual Review of Astronomy and Astrophysics, vol. 43, pp. 769–826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. A. E. Shapley, C. C. Steidel, M. Pettini, and K. L. Adelberger, “Rest-frame ultraviolet spectra of z~ 3 lyman break galaxies,” Astrophysical Journal Letters, vol. 588, no. 1, pp. 65–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. B. J. Weiner, A. L. Coil, J. X. Prochaska et al., “Ubiquitous outflows in deep2 spectra of star-forming galaxies at z = 1.4,” Astrophysical Journal, vol. 692, no. 1, p. 187, 2009. View at Publisher · View at Google Scholar
  77. A. Dekel, A. Zolotov, D. Tweed, M. Cacciato, D. Ceverino, and J. R. Primack, “Toy models for galaxy formation versus simulations,” Monthly Notices of the Royal Astronomical Society, vol. 435, pp. 999–1019, 2013. View at Publisher · View at Google Scholar
  78. S. J. Lilly, C. M. Carollo, A. Pipino, A. Renzini, and Y. Peng, “Gas regulation of galaxies: the evolution of the cosmic specific star formation rate, the metallicity-mass-star-formation rate relation, and the stellar content of halos,” Astrophysical Journal, vol. 772, no. 2, p. 119, 2013. View at Publisher · View at Google Scholar
  79. L. J. Kewley, D. Rupke, H. Jabran Zahid, M. J. Geller, and E. J. Barton, “Metallicity gradients and gas flows in galaxy pairs,” Astrophysical Journal Letters, vol. 721, no. 1, pp. L48–L52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. A. Rich, P. Torrey, L. J. Kewley, M. A. Dopita, and D. S. N. Rupke, “An integral field study of abundance gradients in nearby luminous infrared galaxies,” Astrophysical Journal, vol. 753, no. 1, p. 5, 2012. View at Publisher · View at Google Scholar