Table of Contents Author Guidelines Submit a Manuscript
Advances in Astronomy
Volume 2013, Article ID 627867, 14 pages
http://dx.doi.org/10.1155/2013/627867
Review Article

The Study of Nebular Emission on Nearby Spiral Galaxies in the IFU Era

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, PUE, Mexico

Received 7 August 2013; Accepted 27 September 2013

Academic Editor: José Manuel Vílchez Medina

Copyright © 2013 Fernando Fabián Rosales-Ortega. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Folkes, S. Ronen, I. Price et al., “The 2dF galaxy redshift survey: spectral types and luminosity functions,” Monthly Notices of the Royal Astronomical Society, vol. 308, no. 2, pp. 459–472, 1999. View at Google Scholar · View at Scopus
  2. D. G. York, J. Adelman, J. E. Anderson et al. et al., “The sloan digital sky survey: technical summary,” The Astronomical Journal, vol. 120, no. 3, article 1579, 2000. View at Publisher · View at Google Scholar
  3. H.-W. Rix, M. Barden, S. V. W. Beckwith et al., “GEMS: galaxy evolution from morphologies and SEDs,” Astrophysical Journal, vol. 152, no. 2, pp. 163–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Scoville, H. Aussel, M. Brusa et al., “The cosmic evolution survey (COSMOS): overview,” Astrophysical Journal, Supplement Series, vol. 172, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nagao, R. Maiolino, and A. Marconi, “Gas metallicity diagnostics in star-forming galaxies,” Astronomy and Astrophysics, vol. 459, no. 1, pp. 85–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Maiolino, T. Nagao, A. Grazian et al., “AMAZE: I. The evolution of the mass metallicity relation at z > 3,” Astronomy and Astrophysics, vol. 488, no. 2, pp. 463–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. C. Kennicutt and P. W. Hodge, “H II regions in NGC 628. III. H-alpha luminosities and the luminosity function,” The Astrophysical Journal, vol. 241, article 573, 1980. View at Publisher · View at Google Scholar
  8. J. Belley and J.-R. Roy, “The abundance gradients across the spiral galaxies NGC 628 and NGC 6946,” Astrophysical Journal, vol. 78, no. 1, pp. 61–85, 1992. View at Google Scholar · View at Scopus
  9. P. A. Scowen, J. J. Hester, J. S. Gallagher, E. Wilcots, and T. W. Idt, “HST WFPC-2 observations of typical star formation in M101,” in Proceedings of the 189th AAS Meeting, vol. 28, p. 1360, Bulletin of the American Astronomical Society, 1996.
  10. J. R. Roy and J.-R. Walsh, “Imaging spectroscopy of H II regions in the barred Spiral galaxy NGC,” Monthly Notices of the Royal Astronomical Society, vol. 234, article 977, 1988. View at Google Scholar
  11. R. C. Kennicutt Jr. and D. R. Garnett, “The composition gradient in M101 revisited. I. H II region spectra and excitation properties,” Astrophysical Journal Letters, vol. 456, no. 2, pp. 504–518, 1996. View at Google Scholar · View at Scopus
  12. M. L. McCall, P. M. Rybski, and G. A. Shields, “The chemistry of galaxies. I: the nature of giant extragalactic HII regions,” The Astrophysical Journal, vol. 57, no. 1, 1985. View at Publisher · View at Google Scholar
  13. L. Van Zee, J. J. Salzer, M. P. Haynes, A. A. O'Donoghue, and T. J. Balonek, “Spectroscopy of outlying HII regions in spiral galaxies: abundances and radial gradients,” Astronomical Journal, vol. 116, no. 6, pp. 2805–2833, 1998. View at Google Scholar · View at Scopus
  14. M. Castellanos, A. I. Díaz, and E. Terlevich, “A comprehensive study of reported high-metallicity giant HII regions. I: detailed abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 2, pp. 315–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Castellanos, Á. I. Díaz, and G. Tenorio-Tagle, “On the large escape of ionizing radiation from giant extragalactic HII regions,” Astrophysical Journal Letters, vol. 565, no. 2, pp. L79–L82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Moustakas and R. C. Kennicutt Jr., “An integrated spectrophotometric survey of nearby star-forming galaxies,” Astrophysical Journal, vol. 164, no. 1, pp. 81–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bacon, Y. Copin, G. Monnet et al., “The SAURON project. I: the panoramic integral-field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 326, no. 1, pp. 23–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. T. de Zeeuw, M. Bureau, E. Emsellem et al., “The SAURON project. II: sample and early results,” Monthly Notices of the Royal Astronomical Society, vol. 329, no. 3, pp. 513–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Ganda, J. Falcón-Barroso, R. F. Peletier et al., “Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals,” Monthly Notices of the Royal Astronomical Society, vol. 367, no. 1, pp. 46–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. F. Rosales-Ortega, R. C. Kennicutt, S. F. Sánchez et al., “PINGS: the PPAK IFS nearby galaxies survey,” Monthly Notices of the Royal Astronomical Society, vol. 405, pp. 735–758, 2010. View at Google Scholar
  21. E. Mármol-Queraltó, S. F. Mármol, R. A. Marino et al., “Integral field spectroscopy of a sample of nearby galaxies: I. sample, observations, and data reduction,” Astronomy and Astrophysics, vol. 534, article A8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. F. Sanchez, R. C. Kennicutt, A. Gil de Paz et al. et al., “CALIFA, the calar alto legacy integral field area survey,” Astronomy and Astrophysics, vol. 538, article 8, 2012. View at Publisher · View at Google Scholar
  23. B. Husemann, K. Jahnke, S. F. Sanchez et al. et al., “CALIFA, the calar alto legacy integral field area survey,” Astronomy & Astrophysics, vol. 549, article 87, 25 pages, 2013. View at Publisher · View at Google Scholar
  24. M. A. Bershady, M. A. W. Verheijen, R. A. Swaters, D. R. Andersen, K. B. Westfall, and T. Martinsson, “The diskmass survey. I: overview,” Astrophysical Journal Letters, vol. 716, no. 1, pp. 198–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Roth, A. Kelz, T. Fechner et al., “PMAS: the Potsdam multi-aperture spectrophotometer. I: design, manufacture, and performance,” Publications of the Astronomical Society of the Pacific, vol. 117, no. 832, pp. 620–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. W. Verheijen, M. A. Bershady, D. R. Andersen et al., “The Disk Mass project; science case for a new PMAS IFU module,” Astronomische Nachrichten, vol. 325, no. 2, pp. 151–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kelz, M. A. W. Verheijen, M. M. Roth et al., “PMAS: the potsdam multi-aperture spectrophotometer. II: the wide integral field unit PPak,” Publications of the Astronomical Society of the Pacific, vol. 118, no. 839, pp. 129–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pettini and B. E. J. Pagel, “[O III]/[N II] as an abundance indicator at high redshift,” Monthly Notices of the Royal Astronomical Society, vol. 348, no. 3, pp. L59–L63, 2004. View at Google Scholar · View at Scopus
  29. S. F. Sánchez, F. F. Rosales-Ortega, R. C. Kennicutt et al., “PPAK Wide-field integral field spectroscopy of NGC 628. I: the largest spectroscopic mosaic on a single galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 313–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. F. Rosales-Ortega, A. I. Díaz, R. C. Kennicutt, and S. F. Sánchez, “PPAK wide-field integral field spectroscopy of NGC628. II: emission line abundance analysis,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 3, pp. 2439–2474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. F. Sánchez, “Techniques for reducing fiber-fed and integral-field spectroscopy data: an implementation on R3D,” Astronomische Nachrichten, vol. 327, p. 850, 2006. View at Google Scholar
  32. Y. Li, F. Bresolin, and R. C. J. Kennicutt, “Testing for azimuthal abundance gradients in M101,” The Astrophysical Journal, vol. 766, article 17, 2013. View at Publisher · View at Google Scholar
  33. Andrievsky, S. M. Bersier, D. Kovtyukh et al., “Using Cepheids to determine the galactic abundance gradient. II: towards the galactic center,” Astronomy and Astrophysics, vol. 384, pp. 140–144, 2002. View at Google Scholar
  34. S. Pedicelli, G. Bono, B. Lemasle et al., “On the metallicity gradient of the Galactic disk,” Astronomy and Astrophysics, vol. 504, no. 1, pp. 81–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. D. Lépine, P. Cruz, J. Scarano et al., “Overlapping abundance gradients and azimuthal gradients related to the spiral structure of the Galaxy,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 1, pp. 698–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Lemasle, P. Francois, K. Genovali et al. et al., “Galactic abundance gradients from Cepheids: alpha and heavy elements in the outer disk,” In Press. http://xxx.tau.ac.il/abs/1308.3249.
  37. J.-M. Deharveng, R. Jedrzejewski, P. Crane, M. J. Disney, and B. Rocca-Volmerange, “Blue stars in the center of the S0 galaxy NGC 5102,” Astronomy and Astrophysics, vol. 326, no. 2, pp. 528–536, 1997. View at Google Scholar · View at Scopus
  38. F. F. Rosales-Ortega, S. F. Sanchez, J. Iglesias-Paramo et al., “A new scaling relation for HII regions in spiral galaxies: unveiling the true nature of the mass-metallicity relation,” The Astrophysical Journal, vol. 756, article L31, 2012. View at Publisher · View at Google Scholar
  39. S. F. Sánchez, F. F. Rosales-Ortega, R. A. Marino et al. et al., “Integral field spectroscopy of a sample of nearby galaxies,” Astronomy and Astrophysics, vol. 546, article A2, 2012. View at Publisher · View at Google Scholar
  40. S. F. Sánchez, N. Cardiel, M. A. W. Verheijen, S. Pedraz, and G. Covone, “Morphologies and stellar populations of galaxies in the core of Abell 2218,” Monthly Notices of the Royal Astronomical Society, vol. 376, no. 1, pp. 125–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, and S. Torres-Peimbert, “Chemical composition and evolution of irregular and blue compact galaxies,” Astronomy and Astrophysics, vol. 80, pp. 155–166, 1979. View at Google Scholar
  42. C. A. Tremonti, T. M. Heckman, G. Kauffmann et al., “The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey,” Astrophysical Journal Letters, vol. 613, no. 2, pp. 898–913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. E. F. Bell and R. S. de Jong, “Stellar mass-to-light ratios and the Tully-Fisher relation,” Astrophysical Journal Letters, vol. 550, no. 1, pp. 212–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. R. C. Kennicutt, “Star formation in galaxies along the Hubble sequence,” ARA Stronomy and Astrophysics, vol. 36, article 189, 1998. View at Publisher · View at Google Scholar
  45. L. J. Kewley and S. L. Ellison, “Metallicity calibrations and the mass-metallicity relation for star-forming galaxies,” Astrophysical Journal Letters, vol. 681, no. 2, pp. 1183–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Lara-López, J. Cepa, A. Bongiovanni et al., “A fundamental plane for field star-forming galaxies,” Astronomy and Astrophysics, vol. 521, no. 2, article L53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Mannucci, G. Cresci, R. Maiolino, A. Marconi, and A. Gnerucci, “A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 4, pp. 2115–2127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Hunt, L. Magrini, D. Galli et al. et al., “Scaling relations of metallicity, stellar mass and star formation rate in metal-poor starbursts. I: a fundamental plane,” Monthly Notices of the Royal Astronomical Society, vol. 427, no. 2, pp. 906–918, 2012. View at Publisher · View at Google Scholar
  49. S. F. Sánchez, F. F. Rosales-Ortega, B. Jungwiert et al. et al., “Mass-metallicity relation explored with CALIFA,” Astronomy and Astrophysics, vol. 554, article 58, 2013. View at Publisher · View at Google Scholar
  50. E. Perez, R. Cid Fernandes, R. M. Gonzalez Delgado et al. et al., “The evolution of galaxies resolved in space and time: an inside-out growth view from the CALIFA survey,” The Astrophysical Journal Letters, vol. 764, no. 1, 2013. View at Publisher · View at Google Scholar
  51. F. F. Rosales-Ortega, “PINGSoft: an IDL visualisation and manipulation tool for integral field spectroscopic data,” New Astronomy, vol. 16, pp. 220–228, 2011. View at Publisher · View at Google Scholar
  52. F. F. Rosales-Ortega, S. Arribas, and L. Colina, “Integrated spectra extraction based on signal-to-noise optimization using integral field spectroscopy,” Astronomy and Astrophysics, vol. 539, article A73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. Blanc, T. Weinzirl, M. Song et al. et al., “The virus-P exploration of nearby galaxies (venga): survey design, data processing, and spectral analysis methods,” The Astronomical Journal, vol. 145, article 138, 2013. View at Publisher · View at Google Scholar
  54. A. L. Heiderman, N. J. I. Evans, K. Gebhardt et al., “The VIRUS-P Investigation of the extreme environments of starbursts (VIXENS): survey and first results,” in Proceedings of the Frank N. Bash Symposium on New Horizons in Astronomy, 2011.
  55. G. A. Blanc, A. Heiderman, K. Gebhardt, N. J. Evans, and J. Adams, “The spatially resolved star formation law from integral field spectroscopy: virus-p observations of NGC 5194,” Astrophysical Journal Letters, vol. 704, no. 1, pp. 842–862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. A. Blanc, A. Schruba, N. J. I. Evans et al. et al., “The virus-P exploration of nearby glaxies (venga): the X co gradient in NGC 628,” The Astrophysical Journal, vol. 764, article 117, 2013. View at Publisher · View at Google Scholar
  57. S. M. Croom, J. S. Lawrence, J. Bland-Hawthorn et al., “The Sydney-AAO Multi-object Integral field spectrograph,” Monthly Notices of the Royal Astronomical Society, vol. 421, no. 1, pp. 872–893, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Bacon, S. M. Bauer, R. Bower et al. et al., “The second generation VLT instrument MUSE: science drivers and instrument design,” in Groundbased Instrumentation for Astronomy, A. F. M. Moorwood and I. Masanori, Eds., Proceedings of the SPIE, pp. 1145–1149, Observatoire de Lyon, Lyon, France, 2004.
  59. A. M. N. Ferguson, J. S. Gallagher, and R. F. G. Wyse, “The Extreme Outer Regions of Disk Galaxies. I. Chemical Abundances of HII Regions,” Astronomical Journal, vol. 116, article 673, 1998. View at Google Scholar