Abstract and Applied Analysis
 Journal metrics
Acceptance rate13%
Submission to final decision48 days
Acceptance to publication84 days
CiteScore0.580
Impact Factor-
 Submit

Fixed-Point Theorem for Multivalued Quasi-Contraction Maps in a V-Fuzzy Metric Space

Read the full article

 Journal profile

Abstract and Applied Analysis publishes research with an emphasis on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimisation theory, and control theory.

 Editor spotlight

Abstract and Applied Analysis maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A New Efficient Method for Solving Two-Dimensional Nonlinear System of Burger’s Differential Equations

In this work, the Sumudu decomposition method (SDM) is utilized to obtain the approximate solution of two-dimensional nonlinear system of Burger’s differential equations. This method is considered to be an effective tool in solving many problems. Our results have shown that the SDM offers a much better approximation for solving several numbers of systems of two-dimensional nonlinear Burger’s differential equations. To clarify the facility and accuracy of the strategy, two examples are provided.

Research Article

The Role of Control Measures and the Environment in the Transmission Dynamics of Cholera

Cholera is an infectious intestinal disease which occurs as a result of poor sanitation and lack of basic education in its transmission. It is characterized by profuse vomiting and severe diarrhea when an individual eats food or drinks water contaminated with the Vibrio cholerae. A dynamic mathematical model that explicitly simulates the transmission mechanism of cholera by taking into account the role of control measures and the environment in the transmission of the disease is developed. The model comprises two populations: the human population and bacteria population. The next-generation method is used to compute the basic reproduction number, . Both the disease-free and endemic equilibria are shown to be locally and globally stable for values less than unity and unstable otherwise. Necessary conditions of the optimal control problem were analyzed using Pontryagin’s maximum principle with control measures such as educational campaign and treatment of water bodies used to optimize the objective function. Numerical values of model parameters were estimated using the nonlinear least square method. The model simulations confirm the significant role played by control measures (education and treatment of water bodies) and the bacteria in the environment in the transmission dynamics as well as reducing the spread of cholera.

Research Article

Optimal Controls of the Highly Active Antiretroviral Therapy

In this paper, we study generic properties of the optimal, in a certain sense, highly active antiretroviral therapy (or HAART). To address this problem, we consider a control model based on the -dimensional Nowak–May within-host HIV dynamics model. Taking into consideration that precise forms of functional responses are usually unknown, we introduce into this model a nonlinear incidence rate of a rather general form given by an unspecified function of the susceptible cells and free virus particles. We also add a term responsible to the loss of free virions due to infection of the target cells. To mirror the idea of highly active anti-HIV therapy, in this model we assume six controls that can act simultaneously. These six controls affecting different stage of virus life cycle comprise all controls possible for this model and account for all feasible actions of the existing anti-HIV drugs. With this control model, we consider an optimal control problem of minimizing the infection level at the end of a given time interval. Using an analytical mathematical technique, we prove that the optimal controls are bang-bang, find accurate estimates for the maximal possible number of switchings of these controls and establish qualitative types of the optimal controls as well as mutual relationships between them. Having the estimate for the number of switchings found, we can reduce the two-point boundary value problem for Pontryagin Maximum Principle to a considerably simpler problem of the finite-dimensional optimization, which can be solved numerically. Despite this possibility, the obtained theoretical results are illustrated by numerical calculations using BOCOP–2.0.5 software package, and the corresponding conclusions are made.

Research Article

Estimation of Error Variance-Covariance Parameters Using Multivariate Geographically Weighted Regression Model

The Multivariate Geographically Weighted Regression (MGWR) model is a development of the Geographically Weighted Regression (GWR) model that takes into account spatial heterogeneity and autocorrelation error factors that are localized at each observation location. The MGWR model is assumed to be an error vector that distributed as a multivariate normally with zero vector mean and variance-covariance matrix at each location , which is sized for samples at the -location. In this study, the estimated error variance-covariance parameters is obtained from the MGWR model using Maximum Likelihood Estimation (MLE) and Weighted Least Square (WLS) methods. The selection of the WLS method is based on the weighting function measured from the standard deviation of the distance vector between one observation location and another observation location. This test uses a statistical inference procedure by reducing the MGWR model equation so that the estimated error variance-covariance parameters meet the characteristics of unbiased. This study also provides researchers with an understanding of statistical inference procedures.

Research Article

Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials

The main purpose of this article is to make use of the Horadam polynomials and the generating function , in order to introduce three new subclasses of the bi-univalent function class For functions belonging to the defined classes, we then derive coefficient inequalities and the Fekete–Szegö inequalities. Some interesting observations of the results presented here are also discussed. We also provide relevant connections of our results with those considered in earlier investigations.

Research Article

Some Fixed Point Theorems in Modular Function Spaces Endowed with a Graph

The aim of this paper is to give fixed point theorems for -monotone -nonexpansive mappings over -compact or -a.e. compact sets in modular function spaces endowed with a reflexive digraph not necessarily transitive. Examples are given to support our work.

Abstract and Applied Analysis
 Journal metrics
Acceptance rate13%
Submission to final decision48 days
Acceptance to publication84 days
CiteScore0.580
Impact Factor-
 Submit