Abstract and Applied Analysis
 Journal metrics
Acceptance rate14%
Submission to final decision40 days
Acceptance to publication54 days
CiteScore1.300
Impact Factor-

Boundary Value Problem for Nonlinear Implicit Generalized Hilfer-Type Fractional Differential Equations with Impulses

Read the full article

 Journal profile

Abstract and Applied Analysis publishes research with an emphasis on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimisation theory, and control theory.

 Editor spotlight

Chief Editor, Dr Wong, is an associate professor at Nanyang Technological University, Singapore. Her research interests include differential equations, difference equations, integral equations, and numerical mathematics.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A Common Fixed Point Theorem for Generalised -Kannan Mapping in Metric Space with Applications

This paper is aimed at proving a common fixed point theorem for -Kannan mappings in metric spaces with an application to integral equations. The main result of the paper will extend and generalise the recent existing fixed point results in the literature. We also provided illustrative examples and some applications to integral equation, nonlinear fractional differential equation, and ordinary differential equation for damped forced oscillations to support the results.

Research Article

Resolution of the Min-Max Optimization Problem Applied in the Agricultural Sector with the Estimation of Yields by Nonparametric Statistical Approaches

The ultimate objective of the problem under study is to apply the min-max tool, thus making it possible to optimize the default risks linked to several areas: the agricultural sector, for example, which requires the optimization of the default risk using the following elements: silage crops, annual consumption requirements, and crops produced for a given year. To minimize the default risk in the future, we start, in the first step, by forecasting the total budget of agriculture investment for the next 20 years, then distribute this budget efficiently between the irrigation and construction of silos. To do this, Bangladesh was chosen as an empirical case study given the availability of its data on the FAO website; it is considered a large agricultural country in South Asia. In this article, we give a detailed and original in-depth study of the agricultural planning model through a calculating algorithm suggested to be coded on the R software thereafter. Our approach is based on an original statistical modeling using nonparametric statistics and considering an example of a simulation involving agricultural data from the country of Bangladesh. We also consider a new pollution model, which leads to a vector optimization problem. Graphs illustrate our quantitative analysis.

Research Article

Conformable Sumudu Transform of Space-Time Fractional Telegraph Equation

This paper intends to obtain accurate and convergent numerical solutions of linear space-time matching telegraph fractional equations by means of a double Sumudu matching transformation method. Moreover, the numerical model is equipped to explain the work, the accuracy of the work, and sobriety in its presentation method, and as a result, the proposed method shows an effective and convenient way, to employ proven problems in science and engineering.

Research Article

Smarandache Ruled Surfaces according to Frenet-Serret Frame of a Regular Curve in

In this paper, we introduce original definitions of Smarandache ruled surfaces according to Frenet-Serret frame of a curve in . It concerns TN-Smarandache ruled surface, TB-Smarandache ruled surface, and NB-Smarandache ruled surface. We investigate theorems that give necessary and sufficient conditions for those special ruled surfaces to be developable and minimal. Furthermore, we present examples with illustrations.

Research Article

Null Controllability of a Nonlinear Age Structured Model for a Two-Sex Population

This paper is devoted to study the null controllability properties of a nonlinear age and two-sex population dynamics structured model without spatial structure. Here, the nonlinearity and the couplage are at the birth level. In this work, we consider two cases of null controllability problem. The first problem is related to the extinction of male and female subpopulation density. The second case concerns the null controllability of male or female subpopulation individuals. In both cases, if is the maximal age, a time interval of duration after the extinction of males or females, one must get the total extinction of the population. Our method uses first an observability inequality related to the adjoint of an auxiliary system, a null controllability of the linear auxiliary system, and after Kakutani’s fixed-point theorem.

Research Article

Exponential Fitted Operator Method for Singularly Perturbed Convection-Diffusion Type Problems with Nonlocal Boundary Condition

This paper presents the study of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary condition. The proposed numerical scheme is a combination of the classical finite difference method for the boundary conditions and exponential fitted operator method for the differential equations at the interior points. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical examples considered. The method is shown to be first-order accuracy independent of the perturbation parameter .

Abstract and Applied Analysis
 Journal metrics
Acceptance rate14%
Submission to final decision40 days
Acceptance to publication54 days
CiteScore1.300
Impact Factor-
 Submit