Abstract

The paper is devoted to obtaining the sufficient conditions for Fredholm property for the general boundary value problem of the second-order linear integro-differential equation. Here, the boundary conditions corresponding with the boundary value problem contain both nonlocal and global terms.

1. Introduction

As is known, the boundary value problems are studied in differential equations theory and related areas in mathematical physics with local boundary conditions for linear elliptic partial differential equations [14]. Also the number of boundary conditions for linear ordinary differential equation coincide with the order of the [5], and for a partial differential equation (in a bounded domain with smooth boundaries) this number coincides with half of the order of the considered [6]. Then, boundary value problems for linear ordinary differential equations sharply are different from the same problems for linear partial differential equations. Using nonlocal boundary conditions, we remove the misunderstandings given above when passing from boundary value problems for an ordinary differential equation to the problems for partial [79].

The investigation method is as follows. Employing fundamental solution of two-dimensional Laplace equation, Green's second formula [10] and analogy of this formula [79] are constructed for the current problem. Further, necessary conditions are chosen from these formulas. Singular terms contained in necessary conditions are separated. Taking into account the fact that for the obtained singular integral equations we are on the spectrum, these singularities cannot be regularized by standard methods [11, 12]. These singularities are regularized by peculiar method proceeding from the given boundary conditions [7, 8]. Finally, joining the obtained regular relations with the given boundary conditions, we get sufficient condition on Fredholm property for the stated problems.

2. Problem Statement

Let 𝐷𝑅2 be a bounded convex domain with respect to 𝑥2 with boundary Γ supposed to be a Lyapinov line [10]. We assume that the boundary of 𝐷 is divided into two parts Γ𝑘, 𝑘=1,2 with the equations 𝑥2=𝛾𝑘(𝑥1),𝑘=1,2, and 𝑥1[𝑎1,𝑏1]. So, consider the following problem: 𝑙𝑢Δ𝑢(𝑥)+2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗+𝑎0+(𝑥)𝑢(𝑥)𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛(𝑥,𝜂1)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛(𝑥,𝜂1|||||)𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑥(𝑥,𝜂)𝑢(𝜂)𝑑𝜂=𝑓(𝑥),𝑥=1,𝑥2𝐷𝑅2,𝑙(2.1)𝑚𝑢2𝑛=12𝑗=1𝛼𝑚𝑗𝑛𝑥1𝜕𝑢(𝑥)𝜕𝑥𝑗+𝛼𝑚0𝑛𝑥1|||||𝑢(𝑥)𝑥2=𝛾𝑛(𝑥1)+𝑏1𝑎12𝑛=12𝑗=1𝐴𝑚𝑗𝑛𝑥1,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐴𝑚0𝑛𝑥1,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐴𝑚𝑗𝑥1,𝜂𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐴𝑚0𝑥1,𝜂𝑢(𝜂)𝑑𝜂=𝛼𝑚𝑥1,𝑚=1,2,𝑥1𝑎1,𝑏1,(2.2) where Δ is two-dimensional Laplace operator and all the data (the coefficients, kernel of integrals, and the right-hand sides) are continuous functions. Boundary conditions (2.2) are assumed to be linearly independent.

3. Fundamental Solution

As is known, while investigating boundary value problems by potential theory, a fundamental solution of adjoint equation is used. If the considered equation is self-adjoint, then fundamental solution of the same equation is chosen. Taking into account that (2.1) is sufficiently general, it is very difficult to construct fundamental solution of the adjoint equation. Therefore, we will choose fundamental solution of the principal part of equation (2.1), that is, for two-dimensional Laplace equation as follows:1𝑈(𝑥𝜉)=||||.2𝜋ln𝑥𝜉(3.1)

4. Basic Relations

At first, we construct Green's second formula connected with (2.1) and fundamental solution (3.1), that is, we multiply (2.1) by fundamental solution (3.1) and integrate it with respect to domain 𝐷. Further, applying Ostrogradskii-Gauss formula, we get the following:Γ𝑢(𝑥)𝑑𝑈(𝑥𝜉)𝑑𝜈𝑥𝑑𝑢(𝑥)𝑑𝜈𝑈(𝑥𝜉)𝑑𝑥2𝑗=1𝐷𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝑈(𝑥𝜉)𝑑𝑥𝐷𝑎0(𝑥)𝑢(𝑥)𝑈(𝑥𝜉)𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1×𝑈(𝑥𝜉)𝑑𝑥𝐷𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂×𝑈(𝑥𝜉)𝑑𝑥+𝐷1𝑓(𝑥)𝑈(𝑥𝜉)𝑑𝑥=𝑢(𝜉),𝜉𝐷,2𝑢(𝜉),𝜉Γ,(4.1) where 𝜈=𝜈𝑥 is an external normal to the boundary Γ of domain 𝐷 at the point 𝑥Γ.

Now, proceeding from the relations obtained in [79], we derive Green's second formula for (2.1) as follows: Γ𝜕𝑢(𝑥)𝜕𝑥1𝑑𝑈(𝑥𝜉)𝑑𝜈𝑥𝑑𝑥Γ𝜕𝑢(𝑥)𝜕𝑥2𝑑𝑈(𝑥𝜉)𝑑𝜏𝑥+𝑑𝑥𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥1𝑑𝑥+𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥1𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1𝑑𝑥=𝜕𝑢(𝜉)𝜕𝜉11𝜉𝐷,2𝜕𝑢(𝜉)𝜕𝜉1,𝜉Γ,(4.2)Γ𝜕𝑢(𝑥)𝜕𝑥1𝑑𝑈(𝑥𝜉)𝑑𝜏𝑥𝑑𝑥+Γ𝜕𝑢(𝑥)𝜕𝑥2𝑑𝑈(𝑥𝜉)𝑑𝜈𝑥+𝑑𝑥𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥2𝑑𝑥+𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1𝑢||||||(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥2𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2𝑑𝑥=𝜕𝑢(𝜉)𝜕𝜉21,𝜉𝐷,2𝜕𝑢(𝜉)𝜕𝜉2,𝜉Γ,(4.3) where 𝜏𝑥 are tangential directions to the boundary Γ of domain 𝐷 at the point 𝑥Γ.

Theorem 4.1. If the data of (2.1) are continuous functions (coefficients, kernels of integrals, and the right-hand side), the domain 𝐷 is convex in the direction of 𝑥2, and the boundary is Lyapinov's Γ-line, then each solution of (2.1) satisfies the basic relations (4.1)–(4.3).

Remark 4.2. The second relations obtained from (4.1)–(4.3), that is, the expressions corresponding for 𝜉Γ, are necessary conditions. Expressions (4.1)–(4.3) themselves are basic relations.

5. Necessary Conditions

As it was noted above, necessary conditions are obtained from relations (4.1)–(4.3). For reducing these conditions, at first we notice that 𝑑𝑈(𝑥𝜉)𝑑𝜈𝑥1𝑑𝑥=2𝜋1+𝛾21𝜎1𝛾1𝜎1𝛾1𝑥1𝑥1𝜉1𝑑𝑥1,𝑥Γ1,𝜉Γ1,(5.1)d𝑈(𝑥𝜉)𝑑𝜈𝑥1𝑑𝑥=2𝜋1+𝛾22𝜎2𝛾2𝜎2𝛾2𝑥1𝑥1𝜉1𝑑𝑥1,𝑥Γ2,𝜉Γ2,(5.2)

For Lyapinov boundary, boundary values of normal derivative of fundamental solution (5.1) and (5.2) may contain only weak singularity (5.3), (5.4) and the same values of tangential derivative contain singularity (5.5), (5.6). If the points 𝑥 and 𝜉 belong to different parts of the boundary Γ, then there are no singularities in boundary values from derivative of fundamental solution (both in norms and tangential directions).

Thus, we obtain the following necessary conditions: 12𝑢𝜉1,𝛾1𝜉11=2𝜋𝑏1𝑎1𝑢𝑥1,𝛾1𝑥1𝛾1𝜎1𝛾1𝑥11+𝛾21𝜎1𝑥1𝜉1𝑑𝑥1+12𝜋𝑏1𝑎1𝑢𝑥1,𝛾2𝑥1𝛾2𝑥1𝛾1𝜉1𝑥1𝜉1𝛾2𝑥1𝑥1𝜉12+𝛾2𝑥1𝛾1𝜉12𝑑𝑥1𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)𝑈𝑥1𝜉1,𝛾1𝑥1𝛾1𝜉1𝛾1𝑥1𝑑𝑥1+𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)𝑈𝑥1𝜉1,𝛾1𝑥1𝛾1𝜉1𝑑𝑥1+𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾2(𝑥1)𝑈𝑥1𝜉1,𝛾2𝑥1𝛾1𝜉1𝛾2𝑥1𝑑𝑥1𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝑈𝑥1𝜉1,𝛾2𝑥1𝛾1𝜉1𝑑𝑥12𝑗=1𝐷𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝑈𝑥1𝜉1,𝑥2𝛾1𝜉1𝑑𝑥𝐷𝑎0𝑥(𝑥)𝑢(𝑥)𝑈1𝜉1,𝑥1𝛾1𝜉1𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1𝑥×𝑈1𝜉1,𝑥2𝛾1𝜉1𝑑𝑥𝐷𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑥(𝑥,𝜂)𝑢(𝜂)𝑑𝜂×𝑈1𝜉1,𝑥2𝛾1𝜉1𝑑𝑥+𝐷𝑥𝑓(𝑥)𝑈1𝜉1,𝑥2𝛾1𝜉1𝑑𝑥,(5.5)12𝑢𝜉1,𝛾2𝜉11=2𝜋𝑏1𝑎1𝑢𝑥1,𝛾1𝑥1𝛾1𝑥1𝛾2𝜉1𝑥1𝜉1𝛾1𝑥1𝑥1𝜉12+𝛾1𝑥1𝛾2𝜉12𝑑𝑥1+12𝜋𝑏1𝑎1𝑢𝑥1,𝛾2𝑥1𝛾2𝜎2𝛾2𝑥11+𝛾22𝜎1𝑥1𝜉1𝑑𝑥1𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)𝑈𝑥1𝜉1,𝛾1𝑥1𝛾2𝜉1𝛾1𝑥1𝑑𝑥1+𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)𝑈𝑥1𝜉1,𝛾1𝑥1𝛾2𝜉1𝑑𝑥1+𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝑈𝑥1𝜉1,𝛾2𝑥1𝛾2𝜉1𝛾2𝑥1𝑑𝑥1𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝑈𝑥1𝜉1,𝛾2𝑥1𝛾2𝜉1𝑑𝑥12𝑗=1𝐷𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝑈𝑥1𝜉1,𝑥2𝛾2𝜉1𝑑𝑥𝐷𝑎0𝑥(𝑥)𝑢(𝑥)𝑈1𝜉1,𝑥2𝛾2𝜉1𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1𝑥×𝑈1𝜉1,𝑥2𝛾2𝜉1𝑑𝑥𝐷𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑥(𝑥,𝜂)𝑢(𝜂)𝑑𝜂×𝑈1𝜉1,𝑥2𝛾2𝜉1𝑑𝑥+𝐷𝑥𝑓(𝑥)𝑈1𝜉1,𝑥2𝛾2𝜉1𝑑𝑥.(5.6)

Theorem 5.1. Under the conditions of theorem 1, the necessary conditions (5.7) and (5.8) are regular, that is, they do not contain singular terms.

Now, we give necessary conditions obtained from relations (4.2) and (4.3) as follows12𝜕𝑢(𝜉)𝜕𝜉1||||𝜉2=𝛾1(𝜉1)1=2𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)11+𝛾21𝜎1𝛾1𝜎1𝛾1𝑥1𝑥1𝜉1𝑑𝑥1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾2(𝑥1)𝛾2𝑥1𝛾1𝜉1+𝑥1𝜉1𝛾2𝑥1𝑥1𝜉12+𝛾2𝑥1𝛾1𝜉12𝑑𝑥112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)1+𝛾1𝜎1𝛾1𝑥11+𝛾21𝜎1𝑑𝑥1𝑥1𝜉112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝑥1𝜉1+𝛾2𝑥1𝛾1𝜉1𝛾2(𝑥)𝑥1𝜉12+𝛾2𝑥1𝛾1𝜉12𝑑𝑥1+𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥1|||||𝜉2=𝛾1(𝜉1)+𝑑𝑥𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1||||𝜉2=𝛾1(𝜉1)+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥1|||||𝜉2=𝛾1(𝜉1)𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1||||𝜉2=𝛾1(𝜉1)1𝑑𝑥,(5.7)2𝜕𝑢(𝜉)𝜕𝜉1||||𝜉2=𝛾2(𝜉1)1=2𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)𝛾1𝑥1𝛾2𝜉1+𝑥1𝜉1𝛾1𝑥1𝑥1𝜉12+𝛾1𝑥1𝛾2𝜉12𝑑𝑥1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾2(𝑥1)𝛾2𝜎2𝛾2𝑥11+𝛾22𝜎2𝑑𝑥1𝑥1𝜉112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)𝑥1𝜉1+𝛾1𝑥1𝛾2𝜉1𝛾1(𝑥)𝑥1𝜉12+𝛾1𝑥1𝛾2𝜉12𝑑𝑥112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)1+𝛾2𝜎2𝛾2𝑥11+𝛾22𝜎2𝑑𝑥1𝑥1𝜉1+𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥1|||||𝜉2=𝛾2(𝜉1)+𝑑𝑥𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1||||𝜉2=𝛾2(𝜉1)+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥1|||||𝜉2=𝛾2(𝜉1)𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥1||||𝜉2=𝛾2(𝜉1)1𝑑𝑥,(5.8)2𝜕𝑢(𝜉)𝜕𝜉2||||𝜉2=𝛾1(𝜉1)1=2𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)1+𝛾1𝜎1𝛾1𝑥11+𝛾21𝜎1𝑑𝑥1𝑥1𝜉1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾2(𝑥1)𝑥1𝜉1+𝛾2𝑥1𝛾1𝜉1𝛾2𝑥1𝑥1𝜉12+𝛾2𝑥1𝛾1𝜉12𝑑𝑥112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)𝛾1𝜎1𝛾1𝑥1𝑥1𝜉1𝑑𝑥11+𝛾21𝜎1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝛾2𝑥1𝛾1𝜉1+𝑥1𝜉1𝛾2𝑥1𝑥1𝜉12+𝛾2𝑥1𝛾1𝜉12𝑑𝑥1+𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥2|||||𝜉2=𝛾1(𝜉1)+𝑑𝑥𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2||||𝜉2=𝛾1(𝜉1)+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥2|||||𝜉2=𝛾1(𝜉1)𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2||||𝜉2=𝛾1(𝜉1)𝑑𝑥.(5.9)12𝜕𝑢(𝜉)𝜕𝜉2||||𝜉2=𝛾2(𝜉1)=12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾1(𝑥1)𝑥1𝜉1+𝛾1𝑥1𝛾2𝜉1𝛾1𝑥1𝑥1𝜉12+𝛾1𝑥1𝛾2𝜉12𝑑𝑥1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾2(𝑥1)1+𝛾2𝜎2𝛾2𝑥11+𝛾22𝜎2𝑑𝑥1𝑥1𝜉112𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾1(𝑥1)𝛾1𝑥1𝛾2𝜉1𝑥1𝜉1𝛾1𝑥1𝑥1𝜉12+𝛾1𝑥1𝛾2𝜉12𝑑𝑥1+12𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾2(𝑥1)𝛾2𝜎2𝛾2𝑥11+𝛾22𝜎2𝑑𝑥1𝑥1𝜉1+𝐷2𝑗=1𝑎𝑗(𝑥)𝜕𝑢(𝑥)𝜕𝑥𝑗𝜕𝑈(𝑥𝜉)𝜕𝑥2|||||𝜉2=𝛾2(𝜉1)+𝑑𝑥𝐷𝑎0(𝑥)𝑢(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2||||𝜉2=𝛾2(𝜉1)+𝑑𝑥𝐷𝑏1𝑎12𝑛=12𝑗=1𝐾𝑗𝑛𝑥,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0𝑛𝑥,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1+𝐷2𝑗=1𝐾𝑗(𝑥,𝜂)𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐾0(𝑥,𝜂)𝑢(𝜂)𝑑𝜂𝜕𝑈(𝑥𝜉)𝜕𝑥2|||||𝜉2=𝛾2(𝜉1)𝑑𝑥𝐷𝑓(𝑥)𝜕𝑈(𝑥𝜉)𝜕𝑥2||||𝜉2=𝛾2(𝜉1)𝑑𝑥.(5.10)1+𝛾𝑘𝜎𝑘𝛾𝑘𝑥11+𝛾2𝑘𝜎𝑘=1+1+𝛾𝑘𝜎𝑘𝛾𝑘𝑥11+𝛾2𝑘𝜎𝑘𝛾1=1+𝑘𝜎𝑘𝛾𝑘𝑥1𝛾𝑘𝜎𝑘1+𝛾2𝑘𝜎𝑘,𝑘=1,2.(6.1)𝜕𝑢(𝜉)𝜕𝜉1||||𝜉2=𝛾𝑘(𝜉1)1=𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥2||||𝑥2=𝛾𝑘(𝑥1)𝑑𝑥1𝑥1𝜉1+,𝑘=1,2,𝜕𝑢(𝜉)𝜕𝜉2||||𝜉2=𝛾𝑘(𝜉1)=1𝜋𝑏1𝑎1𝜕𝑢(𝑥)𝜕𝑥1||||𝑥2=𝛾𝑘(𝑥1)𝑑𝑥1𝑥1𝜉1+,𝑘=1,2.(6.2)

Thus, we prove the following statement.

Theorem 5.2. Under the conditions of Theorem 4.1, each of the necessary conditions (5.7), (5.8), (5.9), and (5.10) contains one singular term.

6. Separation of Singularities

As it was noted in Theorem 5.2, the last four of six necessary conditions have singularities. Let us separate these singularities, that is, determine their coefficients. It is easy to check that 2𝑛=1𝛼𝑚2𝑛𝜉1𝜕𝑢(𝜉)𝜕𝜉1||||𝜉2=𝛾𝑛(𝜉1)+𝛼𝑚1𝑛𝜉1𝜕𝑢(𝜉)𝜕𝜉2||||𝜉2=𝛾𝑛(𝜉1)=1𝜋𝑏1𝑎122𝑛=1𝑗=1𝛼𝑚𝑗𝑛𝜉1𝜕𝑢(𝑥)𝜕𝑥𝑗|||||𝑥2=𝛾𝑛(𝑥1)𝑑𝑥1𝑥1𝜉1+,𝑚=1,2.(7.1)

Therefore, we write the necessary conditions in theorem 3 in the following form, where pure singular terms are noted 2𝑛=1𝛼𝑚2𝑛𝜉1𝜕𝑢(𝜉)𝜕𝜉1||||𝜉2=𝛾𝑛(𝜉1)+𝛼𝑚1𝑛𝜉1𝜕𝑢(𝜉)𝜕𝜉2||||𝜉2=𝛾𝑛(𝜉1)=1𝜋𝑏1𝑎12𝑛=1𝛼𝑚0𝑛𝑥1|||||𝑢(𝑥)𝑥2=𝛾𝑛(𝑥1)𝑏1𝑎12𝑛=12𝑗=1𝐴𝑚𝑗𝑘𝑥1,𝜂1𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐴𝑚0𝑘𝑥1,𝜂1|||||𝑢(𝜂)𝜂2=𝛾𝑛(𝜂1)𝑑𝜂1𝐷2𝑗=1𝐴𝑚𝑗𝑥1,𝜂𝜕𝑢(𝜂)𝜕𝜂𝑗+𝐴𝑚0𝑥1,𝜂𝑢(𝜂)𝑑𝜂+𝛼𝑚𝑥1×𝑑𝑥1𝑥1𝜉1+,𝑚=1,2.(7.2)

The dots denote the sum of nonsingular terms.

7. Fredholm Property

Considering necessary conditions (6.2), we construct the following linear combination: 𝛼𝑚𝑗𝑛(𝑥1)

To the right-hand side under the sign of integral we substitute their expression from boundary conditions (2.2). Considering the schemes of [8, 9], we obtain the following: 𝑚,𝑗

Thus, we proved the following.

Theorem 7.1. Under the conditions of theorem 1, if boundary conditions (2.2) are linear independent, the coefficients 𝑛=1,2, 𝛼𝑚(𝑥1), and 𝑚=1,2 belong to some Holder class, all the kernels of the integrals in boundary conditions (2.2) are continuous, and the right-hand side (𝑎1,𝑏1) for 𝑢(𝑥1,𝛾1(𝑥1)) are continuously differentiable functions vanishing at the end of the interval 𝑢(𝑥1,𝛾2(𝑥1)), then relations (7.2) are regular.

Really, for regularization of the first term in the right-hand side of (7.2), it suffices to consider regular relations (5.5) and (5.6) for |||||||||𝛼111𝜉1𝛼112𝜉1𝛼121𝜉1𝛼122𝜉1𝛼211𝜉1𝛼212𝜉1𝛼221𝜉1𝛼222𝜉1𝛼121𝜉1𝛼122𝜉1𝛼111𝜉1𝛼112𝜉1𝛼221𝜉1𝛼222𝜉1𝛼211𝜉1𝛼212𝜉1|||||||||0,(7.3), 𝜕𝑢(𝑥)/𝜕𝑥1, and interchange integrals after substitution.

The last term does not contain unknown functions and is understood in the sense of the principal value and is regularized in (7.2). All intermediate terms are regularized by permutation of integrals contained in these terms.

Finally, combining (2.2) and (7.2), from the obtained four relations we arrive at the following restriction: 𝜕𝑢(𝑥)/𝜕𝑥2 that is, a sufficient condition for reduction of (2.2), (7.2) with respect to boundary conditions to 𝑢(𝑥) and 𝜕𝑢(𝑥)/𝜕𝑥1 the normal form.

Thus, combining (5.5), (5.6), (2.2), and (7.2), we get (for boundary values) for 𝜕𝑢(𝑥)/𝜕𝑥2, 𝑢(𝑥), and 𝜕𝑢(𝑥)/𝜕𝑥1, six second type Fredholm regular integral equations. Finally, considering three integral equations for 𝜕𝑢(𝑥)/𝜕𝑥2, 𝑥𝐷 and for , obtained from the first expressions of principal relations (4.1)–(4.3), we get the following result.

Theorem 7.2. Under the conditions of Theorem 7.1 and condition (7.3), boundary value problem (2.1)–(2.2) is of Fredholm type.