Abstract

This paper deals with the higher-order nonlinear neutral delay differential equation (𝑑𝑛/𝑑𝑡𝑛)[𝑥(𝑡)+𝑚𝑖=1𝑝𝑖(𝑡)𝑥(𝑇𝑖(𝑡))]+(𝑑𝑛1/𝑑𝑡𝑛1)𝑓(𝑡,𝑥(𝛼1(𝑡)),,𝑥(𝛼𝑘(𝑡)))+(𝑡,𝑥(𝛽1(𝑡)),,𝑥(𝛽𝑘(𝑡)))=𝑔(𝑡), 𝑡𝑡𝑜, where 𝑛,𝑚,𝑘, 𝑝𝑖,𝜏𝑖,𝛽𝑗,𝑔𝐶([𝑡𝑜,+),), 𝛼𝑗𝐶𝑛1([𝑡𝑜,+),), 𝑓𝐶𝑛1([𝑡𝑜,+)×𝑘,), 𝐶([𝑡𝑜,+)×𝑘,), and lim𝑡+𝜏𝑖(𝑡)=lim𝑡+𝛼𝑗(𝑡)=lim𝑡+𝛽𝑗(𝑡)=+, 𝑖{1,2,,𝑚},𝑗{1,2,,𝑘}. By making use of the Leray-Schauder nonlinear alterative theorem, we establish the existence of uncountably many bounded positive solutions for the above equation. Our results improve and generalize some corresponding results in the field. Three examples are given which illustrate the advantages of the results presented in this paper.

1. Introduction and Preliminaries

This paper is concerned with the higher-order nonlinear neutral delay differential equation: 𝑑𝑛𝑑𝑡𝑛𝑥(𝑡)+𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+𝑑(𝑡)𝑛1𝑑𝑡𝑛1𝑓𝛼𝑡,𝑥1𝛼(𝑡),,𝑥𝑘𝛽(𝑡)+𝑡,𝑥1𝛽(𝑡),,𝑥𝑘(𝑡)=𝑔(𝑡),𝑡𝑡0,(1.1) where 𝑛,𝑚,𝑘,𝑝𝑖,𝜏𝑖,𝛽𝑗,𝑔𝐶([𝑡0,+),),𝛼𝑗𝐶𝑛1([𝑡0,+),),𝑓𝐶𝑛1([𝑡0,+)×𝑘,),𝐶([𝑡0,+)×𝑘,), and lim𝑡+𝜏𝑖(𝑡)=lim𝑡+𝛼𝑗(𝑡)=lim𝑡+𝛽𝑗(𝑡)=+,𝑖{1,2,,𝑚},𝑗{1,2,,𝑘}.(1.2)

Theory of neutral delay differential equations has undergone a rapid development in the last over thirty years. We refer the readers to [18] and the references therein for a wealth of reference materials on the subject. The authors [18] and others discussed the oscillation, nonoscillation, and existence of a nonoscillatoy solution for some special cases of (1.1) under various conditions. By using the Banach fixed point theorem, Zhang et al. [4] and Kulenović and Hadžiomerspahić [1] studied, respectively, the existence of a nonoscillatory solution for the first-order neutral delay differential equation: 𝑑[]𝑑𝑡𝑥(𝑡)+𝑝(𝑡)𝑥(𝑡𝜏)+𝑃(𝑡)𝑥(𝑡𝜎)𝑄(𝑡)𝑥(𝑡𝛿)=0,𝑡𝑡0,(1.3) where 𝜏>0, 𝜎,𝛿+, 𝑃,𝑄𝐶([𝑡0,+),+), and 𝑝𝐶([𝑡0,+),), and the second-order neutral delay differential equation with positive and negative coefficients: 𝑑2𝑑𝑡2[]𝑥(𝑡)+𝑝𝑥(𝑡𝜏)+𝑃(𝑡)𝑥(𝑡𝜎)𝑄(𝑡)𝑥(𝑡𝛿)=0,𝑡𝑡0,(1.4) where 𝑝{±1}, 𝜎,𝛿+ and 𝑃,𝑄𝐶([𝑡0,+),+). Zhang et al. [6] considered the second-order nonlinear neutral differential equation with positive and negative terms: 𝑑2𝑑𝑡2[]𝑥(𝑡)𝑝𝑥(𝜏(𝑡))+𝑓1𝜎𝑡,𝑥1(𝑡)𝑓2𝜎𝑡,𝑥2(𝑡)=0,𝑡𝑡0(1.5) and its corresponding equation with forced term: 𝑑2𝑑𝑡2[]𝑥(𝑡)𝑝𝑥(𝜏(𝑡))+𝑓1𝜎𝑡,𝑥1(𝑡)𝑓2𝜎𝑡,𝑥2(𝑡)=𝑔(𝑡),𝑡𝑡0,(1.6) where 𝑡𝑡0, 𝑝,𝜏,𝜎𝑖𝐶([𝑡0,),), 𝑓𝑖𝐶([𝑡0,)×,), and lim𝑡+𝜏(𝑡)=lim𝑡+𝜎𝑖(𝑡)=+ for 𝑖{1,2}. Lin [2] investigated sufficient conditions of oscillation and nonoscillation for the second-order nonlinear neutral differential equation: 𝑑2𝑑𝑡2[]𝑥(𝑡)𝑝(𝑡)𝑥(𝑡𝜏)+𝑞(𝑡)𝑓(𝑥(𝑡𝜎))=0,𝑡0,(1.7) where 𝜏>0,𝜎>0, 𝑝,𝑞𝐶(+,+), 𝑓𝐶(,) with 𝑥𝑓(𝑥)>0 for all 𝑥0. Liu and Huang [3] used the coincidence degree theory to establish the existence and uniqueness of 𝑇-periodic solutions for the second-order neutral functional differential equation of the form 𝑑2𝑑𝑡2[]𝑥(𝑡)+𝐵𝑥(𝑡𝛿)+𝐶𝑑𝑥(𝑡)𝑑𝑡+𝑔(𝑥(𝑡𝜏(𝑡)))=𝑝(𝑡),𝑡0,(1.8) where 𝜏,𝑝,𝑔 are continuous functions, 𝐵, 𝛿, 𝐶 are constants, 𝜏 and 𝑝 are 𝑇-periodic, 𝐶0,|𝐵|1, and 𝑇>0. Zhou and Zhang [8] extended the results in [1] to the higher-order neutral functional differential equation with positive and negative coefficients: 𝑑𝑛𝑑𝑡𝑛[]𝑥(𝑡)+𝑝𝑥(𝑡𝜏)+(1)𝑛+1[]𝑃(𝑡)𝑥(𝑡𝜎)𝑄(𝑡)𝑥(𝑡𝛿)=0,𝑡𝑡0,(1.9) where 𝑝{±1}, 𝜏,𝜎,𝛿+ and 𝑃,𝑄𝐶([𝑡0,+),+). Zhou et al. [7] used the Krasnoselskii fixed point theorem and the Schauder fixed point theorem to prove the existence results of a nonoscillatory solution for the forced higher-order nonlinear neutral functional differential equation: 𝑑𝑛𝑑𝑡𝑛[]+𝑥(𝑡)+𝑝(𝑡)𝑥(𝑡𝜏)𝑚𝑖=1𝑞𝑖𝑥(𝑡)𝑓𝑡𝜎𝑖=𝑔(𝑡),𝑡𝑡0,(1.10) where 𝜏,𝜎𝑖+, 𝑝,𝑞𝑖,𝑔𝐶([𝑡0,+),) for 𝑖{1,2,,𝑚} and 𝑓𝐶(,). Zhang et al. [5] obtained some sufficient conditions for the oscillation of all solutions of the even order nonlinear neutral differential equations with variable coefficients: 𝑑𝑛𝑑𝑡𝑛[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑞(𝑡)𝑓(𝑥(𝜎(𝑡)))=0,𝑡𝑡0,(1.11) where 𝑛 is an even number, 𝑝,𝑞,𝜎,𝜏𝐶([𝑡0,+),+) with 0𝑝(𝑡)<1, for all 𝑡𝑡0, lim𝑡+𝜏(𝑡)=lim𝑡+,𝜎𝑖(𝑡)=+ and 𝑓𝐶([𝑡0,+),).

The purpose of this paper is to investigate the solvability of (1.1). By constructing appropriate mappings and using the Laray-Schauder nonlinear alternative theorem, we establish a few sufficient conditions which ensure the existence of uncountably many bounded positive solutions for (1.1). Our results improve and generalize some corresponding results in [1, 2, 4, 68]. Three examples are given to illustrate the advantages of the results presented in this paper.

Throughout this paper, we assume that , +, and denote the sets of all real numbers, nonnegative numbers, and positive integers, respectively, and 𝜏𝜈=inf𝑖(𝑡),𝛼𝑗(𝑡),𝛽𝑗𝑡(𝑡)𝑡0,+,𝑖{1,2,,𝑚},𝑗{1,2,,𝑘}.(1.12) Let CB([𝜈,+),) stand for the Banach space of all continuous and bounded functions in [𝜈,+) with norm 𝑥=sup𝑡𝜈|𝑥(𝑡)| for all 𝑥CB([𝜈,+),) and [𝑈𝐸(𝑁)={𝑥CB(𝜈,+),)𝑥(𝑡)𝑁for𝑡𝜈},(𝑀)={𝑥𝐸(𝑁)𝑥<𝑀},(1.13) where 𝑀,𝑁+ with 𝑀>𝑁>0. Clearly, 𝐸(𝑁) is a nonempty closed convex subset of CB([𝜈,+),) and 𝑈(𝑀) is an open subset of 𝐸(𝑁).

By a solution of (1.1), we mean a function 𝑥𝐶([𝜈,+),) with some 𝑇𝑡0+|𝜈| such that 𝑥(𝑡)+𝑚𝑖=1𝑝𝑖(𝑡)𝑥(𝜏𝑖(𝑡)) is 𝑛 times continuously differentiable in [𝑇,+) and 𝑓(𝑡,𝑥(𝛼1(𝑡)),,𝑥(𝛼𝑘(𝑡))) is 𝑛1 times continuously differentiable in [𝑇,+) and (1.1) holds for 𝑡𝑇.

Lemma 1.1 (the Leray-Schauder nonlinear alterative theorem [9]). Let 𝐸 be a closed convex subset of a Banach space 𝑋 and let 𝑈 be an open subset of 𝐸 with 𝑝𝑈. Also, 𝐺𝑈𝐸 is a continuous, condensing mapping with 𝐺(𝑈) bounded, where 𝑈 denotes the closure of 𝑈 Then,
(𝐴1)𝐺 has a fixed point in 𝑈, or(𝐴2) there are 𝑥𝜕𝑈 and 𝜆(0,1) with 𝑥=(1𝜆)𝑝+𝜆𝐺𝑥.

2. Main Results

Now, we apply the Leray-Schauder nonlinear alterative theorem to investigate the existence of uncountably many bounded positive solutions of (1.1) under certain conditions.

Theorem 2.1. Assume that there exist constants 𝑀,𝑁,𝑝0,𝑡1 and functions 𝐹,𝐻𝐶([𝑡0,+),+) satisfying ||𝑓𝑡,𝑢1,,𝑢𝑘||𝐹(𝑡),𝑡,𝑢1,,𝑢𝑘𝑡0×[],+𝑁,𝑀𝑘,||(2.1)𝑡,𝑣1,,𝑣𝑘||𝐻(𝑡),𝑡,𝑣1,,𝑣𝑘𝑡0×[],+𝑁,𝑀𝑘,(2.2)max𝑡+0𝐹(𝑠)𝑑𝑠,𝑡+0𝑠𝑛1||||max𝑔(𝑠),𝐻(𝑠)𝑑𝑠<+,(2.3)0<𝑁<12𝑝0𝑀,𝑚𝑖=1||𝑝𝑖||(𝑡)𝑝0<12,𝑡𝑡1𝑡0.(2.4) Then, (1.1) has uncountably many bounded positive solutions in 𝑈(𝑀).

Proof. Let 𝐿(𝑝0𝑀+𝑁,(1𝑝0)𝑀). It follows from (2.3) and (2.4) that there exists a constant 𝑇>1+|𝑡0|+|𝑡1|+|𝜈| satisfying 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠<min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2.(2.5) Choose 𝜖0(0,min{𝐿𝑝0𝑀𝑁,(1𝑝0)𝑀𝐿,(𝑀𝑁/2)}) with 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠<min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2𝜖0.(2.6) Put 𝑝=𝑀𝜖0. Clearly, 𝑝𝑈(𝑀). Define two mappings 𝐴𝐿,𝐵𝐿𝑈(𝑀)𝐶𝐵([𝜈,+),) by 𝐴𝐿𝑥(𝑡)=𝐿𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+(𝑡)(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝐴𝑔(𝑠)𝑑𝑠,𝑡𝑇,𝐿𝑥𝐵(𝑇),𝜈𝑡<𝑇,(2.7)𝐿𝑥(𝑡)=𝑡+𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(+𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘𝐵(𝑠)𝑑𝑠,𝑡𝑇,𝐿𝑥(𝑇),𝜈𝑡<𝑇(2.8) for all 𝑥𝑈(𝑀). It is clear to see that 𝐴𝐿𝑥 and 𝐵𝐿𝑥 are continuous for each 𝑥𝑈(𝑀). Let 𝐷𝐿=𝐴𝐿+𝐵𝐿. In view of (2.1), (2.2), and (2.4)–(2.8), we get that 𝐴𝐿𝑥𝐵(𝑡)+𝐿𝑥(𝑡)=𝐿𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+((𝑡)1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1+𝑔(𝑠)𝑑𝑠𝑡+𝑓𝛼𝑠,𝑥1𝛼(𝑠),,𝑥𝑘+((𝑠)𝑑𝑠1)𝑛1(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘(𝑠)𝑑𝑠𝐿𝑝0𝑀𝑇+𝐹(𝑠)𝑑𝑠𝑇+𝑠𝑛1||||𝑔(𝑠)+𝐻(𝑠)𝑑𝑠𝐿𝑝0𝑀min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2+𝜀0[>𝑁,(𝑡,𝑥)𝑇,+)×𝑈(𝑀),(2.9) which gives that 𝐷𝐿𝑈(𝑀)𝐸(𝑁).
Now, we show that 𝐵𝐿𝑈(𝑀)CB([𝜈,+),) is continuous and compact. Let {𝑥𝑚}𝑚𝑈(𝑀) be an arbitrary sequence and 𝑥𝐶([𝜈,+),) with 𝑥𝑚𝑥as𝑚.(2.10) Since 𝑈(𝑀) is closed, it follows that 𝑥𝑈(𝑀). For any (𝑠,𝑚)[𝑇,+)×, put 𝐹𝑚||𝑓(𝑠)=𝑠,𝑥𝑚𝛼1(𝑠),,𝑥𝑚𝛼𝑘𝛼(𝑠)𝑓𝑠,𝑥1𝛼(𝑠),,𝑥𝑘||,𝐻(𝑠)𝑚(||𝑠)=𝑠,𝑥𝑚𝛽1(𝑠),,𝑥𝑚𝛽𝑘(𝛽𝑠)𝑠,𝑥1(𝛽𝑠),,𝑥𝑘(||.𝑠)(2.11) It follows from (2.1), (2.2), and (2.11) that ||𝐹𝑚||||𝐻(𝑠)2𝐹(𝑠),𝑚||[(𝑠)2𝐻(𝑠),(𝑠,𝑚)𝑇,+)×,(2.12) which together with (2.8)–(2.11), the continuity of 𝑓,,𝛼𝑗,𝛽𝑗 for 𝑗{1,2,,𝑘}, and the Lebesgue dominated convergence theorem yields that ||𝐵𝐿𝑥𝑚𝐵(𝑡)𝐿𝑥||(𝑡)𝑡+||𝑓𝑠,𝑥𝑚𝛼1(𝑠),,𝑥𝑚𝛼𝑘(𝛼𝑠)𝑓𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(||+1𝑠)𝑑𝑠×(𝑛1)!𝑡+(𝑠𝑡)𝑛1||𝑠,𝑥𝑚𝛽1(𝑠),,𝑥𝑚𝛽𝑘𝛽(𝑠)𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||(𝑠)𝑑𝑠𝑇+𝐹𝑚1(𝑠)𝑑𝑠+(𝑛1)!𝑇+𝑠𝑛1𝐻𝑚(𝑠)𝑑𝑠,𝑡𝑇,limsup𝑚𝐵𝐿𝑥𝑚𝐵𝐿𝑥limsup𝑚𝑇+𝐹𝑚1(𝑠)𝑑𝑠+(𝑛1)!𝑇+𝑠𝑛1𝐻𝑚(𝑠)𝑑𝑠=0,(2.13) which means that 𝐵𝐿 is continuous in 𝑈(𝑀). It follow from (2.1), (2.2), (2.6), and (2.8) that 𝐵𝐿𝑥=sup𝑡𝜈||𝐵𝐿𝑥||(𝑡)𝑇+1𝐹(𝑠)𝑑𝑠+(𝑛1)!𝑇+𝑠𝑛1𝐻(𝑠)𝑑𝑠<min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2𝜖0<𝑀,𝑥𝑈(𝑀),(2.14) which yields that 𝐵𝐿(𝑈(𝑀)) is uniformly bounded in [𝜈,+).
Let 𝜀 be an arbitrary positive number. Equation (2.3) ensures that there exists 𝑇>𝑇 satisfying 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1𝐻𝜀(𝑠)𝑑𝑠<2.(2.15) Set 𝜀𝛿=1+4𝑄+𝑀+𝑄(𝑇𝑇)𝑛1𝐹,𝑄=max(𝑡),𝐻(𝑡)𝑡𝑇,𝑇.(2.16) For any 𝑥𝑈(𝑀) and 𝑡1,𝑡2[𝜈,+) with |𝑡1𝑡2|<𝛿, we consider the following three cases.Case 1 (𝑇𝑡1<𝑡2). In view of (2.1), (2.2), (2.8), and (2.15), we deduce that ||𝐵𝐿𝑥𝑡2𝐵𝐿𝑥𝑡1||=||||𝑡+2𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(+𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+2𝑠𝑡2𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘(𝑠)𝑑𝑠𝑡+1𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+1𝑠𝑡1𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||||(𝑠)𝑑𝑠2𝑇+2𝐹(𝑠)𝑑𝑠+(𝑛1)!𝑇+𝑠𝑛1𝐻(𝑠)𝑑𝑠<𝜀.(2.17)Case 2 (𝑇𝑡1<𝑡2𝑇). Suppose that 𝑛=1. It follows from (2.1), (2.2), (2.6), and (2.8) that ||𝐵𝐿𝑥𝑡2𝐵𝐿𝑥𝑡1||=||||𝑡+2𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(𝑠)𝑑𝑠+𝑡+2𝛽𝑠,𝑥1(𝛽𝑠),,𝑥𝑘(𝑠)𝑑𝑠𝑡+1𝑓𝛼𝑠,𝑥1𝛼(𝑠),,𝑥𝑘(𝑠)𝑑𝑠𝑡+1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||||(𝑠)𝑑𝑠𝑡2𝑡1||𝑡(𝐹(𝑠)+𝐻(𝑠))𝑑𝑠2𝑄1𝑡2||<𝜀.(2.18)Suppose that 𝑛𝑁{1}. It follows from the mean value theorem that, for each 𝑠(𝑡2,+), there exists 𝜁(𝑠𝑡2,𝑠𝑡1) satisfying |||𝑠𝑡2𝑛1𝑠𝑡1𝑛1|||=(𝑛1)𝜁𝑛2||𝑡1𝑡2||(𝑛1)𝑠𝑛1||𝑡1𝑡2||,(2.19) which together with (2.1), (2.2), (2.6), and (2.8) yields that ||𝐵𝐿𝑥𝑡2𝐵𝐿𝑥𝑡1||=||||𝑡+2𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(+𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+2𝑠𝑡2𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘(𝑠)𝑑𝑠𝑡+1𝑓𝛼𝑠,𝑥1(𝛼𝑠),,𝑥𝑘(𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+1𝑠𝑡1𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||||(𝑠)𝑑𝑠𝑡2𝑡11𝐹(𝑠)𝑑𝑠+(𝑛1)!𝑡+2|||𝑠𝑡2𝑛1𝑠𝑡1𝑛1|||𝐻(𝑠)𝑑𝑠+𝑡2𝑡1𝑠𝑡1𝑛1||𝑡𝐻(𝑠)𝑑𝑠𝑄1𝑡2||+||𝑡(𝑛1)1𝑡2||(𝑛1)!𝑡+2𝑠𝑛1𝑇𝐻(𝑠)𝑑𝑠+𝑇𝑛1𝑄||𝑡1𝑡2||𝑇𝑄+𝑀+𝑇𝑛1𝑄||𝑡1𝑡2||<𝜀.(2.20)Case 3 (𝜈𝑡1<𝑡2𝑇). Equation (2.8) gives that ||𝐵𝐿𝑥𝑡2𝐵𝐿𝑥𝑡1||=||𝐵𝐿𝑥𝐵(𝑇)𝐿𝑥||(𝑇)=0.(2.21) Thus, 𝐵𝐿(𝑈(𝑀)) is equicontinuous in [𝜈,+). Hence, 𝐵𝐿(𝑈(𝑀)) is a relatively compact subset of 𝐶([𝜈,+),). That is, 𝐵𝐿 is a compact mapping.
Note that for any 𝑥,𝑦𝑈(𝑀) and 𝑡𝑇||𝐴𝐿𝑥𝐴(𝑡)𝐿𝑦||=|||||(𝑡)𝐿𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+(𝑡)(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝑔(𝑠)𝑑𝑠𝐿+𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑦𝑖(𝑡)(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1|||||𝑔(𝑠)𝑑𝑠𝑚𝑖=1||𝑝𝑖||(𝑡)𝑥𝑦𝑝0𝑥𝑦,(2.22)which implies that 𝐴𝐿𝑥𝐴𝐿𝑦𝑝0𝑥𝑦,𝑥,𝑦𝑈(𝑀),(2.23) which together with (2.4) gives that 𝐴𝐿 is a contraction mapping. It follows that 𝐷𝐿𝑈(𝑀)𝐸(𝑁) is a continuous and condensing mapping. Let 𝑥0(𝑡)=𝑁 for all 𝑡[𝜈,+). Notice that 𝑥0𝑈(𝑀). Thus, (2.4)–(2.7), (2.14), and (2.23) yield that 𝐷𝐿𝑥𝐴𝐿𝑥+𝐵𝐿𝑥𝐴𝐿𝑥𝐴𝐿𝑥0+𝐴𝐿𝑥0+𝑀𝑝0𝑥𝑥0+𝑀+sup𝑡𝑇|||||𝐿𝑚𝑖=1𝑝𝑖(𝑡)𝑥0𝜏𝑖+((𝑡)1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1|||||𝑔(𝑠)𝑑𝑠𝑝0(𝑀+𝑁)+𝑀+𝐿+𝑝0𝑁+𝑇+𝑠𝑛1||||𝑔(𝑠)𝑑𝑠2+𝑝0𝑀+2𝑝0𝑁+𝐿,𝑥𝑈(𝑀),(2.24) that is, 𝐷𝐿(𝑈(𝑀)) is uniformly bounded in [𝛾,+).
Put 𝑆1[𝑆={𝑥CB(𝜈,+),)𝑁𝑥(𝑡)𝑀,𝑡𝜈,𝑥=𝑀},2=[{𝑥CB(𝜈,+),)𝑁𝑥(𝑡)𝑀,𝑡𝜈andthereexists𝑡𝑡𝜈satisfying𝑥.=𝑁(2.25) It is easy to verify that 𝜕𝑈(𝑀)=𝑆1𝑆2.
Next, we show that (𝐴2) in Lemma 1.1 does not hold. Otherwise, there exist 𝑥𝜕𝑈(𝑀) and 𝜆(0,1) satisfying 𝑥=(1𝜆)𝑝+𝜆𝐷𝐿𝑥. We have to discuss the following possible cases. Case 1. Let 𝑥𝑆1. By means of (2.1), (2.2), and (2.4)–(2.8), we get that, for 𝑡𝑇, 𝑥(𝑡)=(1𝜆)𝑝𝐴+𝜆𝐿𝑥𝐵(𝑡)+𝐿𝑥(𝑡)(1𝜆)𝑀𝜖0+𝜆𝐿+𝑚𝑖=1||𝑝𝑖||𝑥𝜏(𝑡)𝑖+1(𝑡)(𝑛1)!𝑡+𝑠𝑛1||||+𝑔(𝑠)𝑑𝑠𝑡+||𝑓𝛼𝑠,𝑥1𝛼(𝑠),,𝑥𝑘||+1(𝑠)𝑑𝑠(𝑛1)!𝑡+𝑠𝑛1||𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||(𝑠)𝑑𝑠(1𝜆)𝑀𝜖0+𝜆𝐿+𝑝0𝑀+𝑡+1𝐹(𝑠)𝑑𝑠+(𝑛1)!𝑡+𝑠𝑛1||||𝑔(𝑠)+𝐻(𝑠)𝑑𝑠<(1𝜆)𝑀𝜖0+𝜆𝐿+𝑝0𝑀+min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2𝜖0𝑀𝜖0,(2.26) which implies that 𝑀=𝑥=sup𝑡𝜈||||𝑥(𝑡)𝑀𝜖0<𝑀,(2.27) which is a contradiction.Case 2. Let 𝑥𝑆2. It follows from (2.1), (2.2), and (2.4)–(2.8) that 𝑡𝑁=𝑥=(1𝜆)𝑝𝐴+𝜆𝐿𝑥𝑡+𝐵𝐿𝑥𝑡=(1𝜆)𝑀𝜖0𝐴+𝜆𝐿𝑥𝑡max+𝐵,𝑇𝐿𝑥𝑡max,𝑇(1𝜆)𝑀𝜖0+𝜆𝐿𝑚𝑖=1||𝑝𝑖𝑡max||𝑥𝜏,𝑇𝑖𝑡max1,𝑇(𝑛1)!+max{𝑡,𝑇}𝑠𝑛1||||𝑔(𝑠)𝑑𝑠+max{𝑡,𝑇}||𝑓𝛼𝑠,𝑥1𝛼(𝑠),,𝑥𝑘||1(𝑠)𝑑𝑠(𝑛1)!+max{𝑡,𝑇}𝑠𝑛1||𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘||(𝑠)𝑑𝑠(1𝜆)𝑀𝜖0+𝜆𝐿𝑝0𝑀+max{𝑡,𝑇}1𝐹(𝑠)𝑑𝑠(𝑛1)!+max{𝑡,𝑇}𝑠𝑛1||||𝑔(𝑠)+𝐻(𝑠)𝑑𝑠(1𝜆)𝑀𝜖0+𝜆𝐿𝑝0𝑀min𝐿𝑝0𝑀𝑁,1𝑝0𝑀𝐿,𝑀𝑁2+𝜖0(1𝜆)𝑀𝜖0+𝜆𝑁+𝜖0min𝑀𝜖0,𝑁+𝜖0=𝑁+𝜖0,(2.28) which is absurd.
Thus, Lemma 1.1 ensures that 𝐷𝐿 has a fixed point 𝑥𝑈(𝑀); that is, 𝑥(𝑡)=𝐿𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+(𝑡)(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑛1+𝑔(𝑠)𝑑𝑠𝑡+𝑓𝛼𝑠,𝑥1𝛼(𝑠),,𝑥𝑘+(𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝛽𝑠,𝑥1𝛽(𝑠),,𝑥𝑘(𝑠)𝑑𝑠,𝑡𝑇,(2.29) which yields that 𝑑𝑛𝑑𝑡𝑛𝑥(𝑡)+𝑚𝑖=1𝑝𝑖𝜏(𝑡)𝑥𝑖+𝑑(𝑡)𝑛1𝑑𝑡𝑛1𝑓𝛼𝑡,𝑥1𝛼(𝑡),,𝑥𝑘𝛽(𝑡)+𝑡,𝑥1𝛽(𝑡),,𝑥𝑘(𝑡)=𝑔(𝑡),𝑡𝑇,(2.30) which means that 𝑥𝑈(𝑀) is a bounded positive solution of (1.1).
Let 𝐿1,𝐿2(𝑝0𝑀+𝑁,(1𝑝0)𝑀) with 𝐿1𝐿2. Similarly, we can prove that, for each 𝑟{1,2}, there exist a constant 𝑇𝑟>1+|𝑡0|+|𝑡1|+|𝜈| and two mappings 𝐴𝐿𝑟,𝐵𝐿𝑟𝑈(𝑀)CB([𝜈,+),) satisfying (2.6)–(2.8), where 𝑇,𝐿,𝐴𝐿, and 𝐵𝐿 are replaced by 𝑇𝑟,𝐿𝑟,𝐴𝐿𝑟, and 𝐵𝐿𝑟, respectively, and 𝐴𝐿𝑟+𝐵𝐿𝑟 has a fixed point 𝑧𝑟𝑈(𝑀), which is a bounded positive solution of (1.1) in 𝑈(𝑀). In order to prove that (1.1) possesses uncountably many bounded positive solutions in 𝑈(𝑀), we need only to prove that 𝑧1𝑧2. By means of (2.1)–(2.3), we know that there exists 𝑇3>max{𝑇1,𝑇2} satisfying 𝑇+3𝐹(𝑠)𝑑𝑠+𝑇+3𝑠𝑛1||𝐿𝐻(𝑠)𝑑𝑠<1𝐿2||4.(2.31) It follows from (2.1), (2.2), (2.4), (2.7), (2.8), and (2.31) that for 𝑡𝑇3||𝑧1(𝑡)𝑧2||=|||||𝐿(𝑡)1𝐿2𝑚𝑖=1𝑝𝑖(𝑡)𝑧1𝜏𝑖+(𝑡)𝑚𝑖=1𝑝𝑖(𝑡)𝑧2𝜏𝑖+(𝑡)𝑡+𝑓𝑠,𝑧1𝛼1(𝑠),,𝑧1𝛼𝑘(𝑠)𝑑𝑠𝑡+𝑓𝑠,𝑧2𝛼1(𝑠),,𝑧2𝛼𝑘(+𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝑠,𝑧1𝛽1(𝑠),,𝑧1𝛽𝑘(𝑠)𝑑𝑠(1)𝑛1(𝑛1)!𝑡+(𝑠𝑡)𝑛1𝑠,𝑧2𝛽1(𝑠),,𝑧2𝛽𝑘||||||𝐿(𝑠)𝑑𝑠1𝐿2||𝑝0𝑧1𝑧22𝑇+3𝐹(𝑠)𝑑𝑠2𝑇+3𝑠𝑛1||𝐿𝐻(𝑠)𝑑𝑠1𝐿2||𝑝0𝑧1𝑧2||𝐿1𝐿2||2,(2.32)which implies that 𝑧1𝑧2||𝐿1𝐿2||21+𝑝0>0,(2.33) that is, 𝑧1𝑧2. This completes the proof.

Theorem 2.2. Assume that there exist constants 𝑀,𝑁,𝑝0,𝑡1 and functions 𝐹,𝐻𝐶([𝑡0,+),+) satisfying (2.1)–(2.3) and 𝑁<1+𝑝0𝑝𝑀,max𝑖(𝑡)1𝑖𝑚0,𝑚𝑖=1𝑝𝑖(𝑡)𝑝0>1,𝑡𝑡1𝑡0.(2.34) Then, (1.1) has uncountably many bounded positive solutions in 𝑈(𝑀).

Proof. Let 𝐿(𝑁,(1+𝑝0)𝑀). It follows from (2.3) and (2.34) that there exists a constant 𝑇>1+|𝑡0|+|𝑡1|+|𝜈| satisfying 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠<min𝐿𝑁,1+𝑝0𝑀𝐿,𝑀𝑁2.(2.35) Take 𝜖0(0,min{𝐿𝑁,(1+𝑝0)𝑀𝐿,(𝑀𝑁/2)}) such that 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠min𝐿𝑁,1+𝑝0𝑀𝐿,𝑀𝑁2𝜖0.(2.36) The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof.

Theorem 2.3. Assume that there exist constants 𝑀,𝑁,𝑝0,𝑡1 and functions 𝐹,𝐻𝐶([𝑡0,+),+) satisfying (2.1)–(2.3) and 𝑁<1𝑝0𝑝𝑀,min𝑖(𝑡)1𝑖𝑚0,𝑚𝑖=1𝑝𝑖(𝑡)𝑝0<1,𝑡𝑡1𝑡0.(2.37) Then, (1.1) has uncountably many bounded positive solutions in 𝑈(𝑀).

Proof. Let 𝐿(𝑝0𝑀+𝑁,𝑀). It follows from (2.3) and (2.37) that there exists a constant 𝑇>1+|𝑡0|+|𝑡1|+|𝜈| satisfying 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠<min𝐿𝑝0𝑀𝑁,𝑀𝐿,𝑀𝑁2.(2.38) Choose 𝜖0(0,min{𝐿𝑝0𝑀𝑁,𝑀𝐿,(𝑀𝑁/2)}) such that 𝑇+𝐹(𝑠)𝑑𝑠+𝑇+𝑠𝑛1||𝑔||(𝑠)+𝐻(𝑠)𝑑𝑠min𝐿𝑝0𝑀𝑁,𝑀𝐿,𝑀𝑁2𝜖0.(2.39) The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof.

Remark 2.4. Theorems 2.12.3 extend, improve, and unify the theorem in [1], Theorem  2.2 in [2], Theorem  1 in [4], Theorems  2.1 and 2.3 in [6], Theorems  1 and 3 in [7], and Theorems  1 and 3 in [8].

3. Examples and Applications

Now, we construct three nontrivial examples to show the superiority and applications of Theorems 2.12.3, respectively.

Example 3.1. Consider the higher-order nonlinear neutral delay differential equation: 𝑑𝑛𝑑𝑡𝑛𝑡𝑥(𝑡)2cos𝑡1+6𝑡2𝑥(𝑡+2)+(1)𝑛𝑡sin1𝑡3𝑥𝑡1+4𝑡3+𝑑𝑡𝑛1𝑑𝑡𝑛11+𝑡2𝑥4(𝑡1)𝑡𝑥2𝑡2+21+𝑡5+𝑡𝑥2𝑡2+2sin2𝑡𝑡3𝑥2(𝑡2)1+𝑥2(𝑡2)+𝑡3+𝑡3+(1/𝑡)1+𝑡𝑛+4cos3𝑥𝑡2+ln𝑡ln1+𝑥22𝑡+𝑡2𝑥𝑡sin21+𝑡𝑛+3+𝑡2=1𝑡3𝑡𝑛+4ln1+𝑡3,𝑡3.(3.1) Let 𝑡0=𝑡1=3,𝑝0=5/12,𝑚=2,𝑘=3,𝑀=36,𝑁=3,𝜈=1, 𝑝1𝑡(𝑡)=2cos𝑡1+6𝑡2,𝑝2(𝑡)=(1)𝑛𝑡sin1𝑡31+4𝑡,𝜏1(𝑡)=𝑡+2,𝜏2(𝑡)=𝑡3𝛼𝑡,1(𝑡)=𝑡1,𝛼2(𝑡)=𝑡2+2,𝛼3(𝑡)=𝑡2,𝛽1(𝑡)=𝑡2ln𝑡,𝛽2(𝑡)=2𝑡,𝛽3(𝑡)=𝑡2,𝑓(𝑡,𝑢,𝑣,𝑤)=1+𝑡2𝑢4𝑡𝑣21+𝑡5+𝑡𝑣2sin2𝑡𝑡3𝑤21+𝑤2+𝑡3,𝑡(𝑡,𝑢,𝑣,𝑤)=3+(1/𝑡)1+𝑡𝑛+4cos3𝑢+ln1+𝑣2+𝑡2sin𝑤1+𝑡𝑛+3+𝑡2,𝐹(𝑡)=1+𝑡2𝑀4+𝑡𝑀21+𝑡5+𝑡𝑀21+𝑁2+𝑡3𝑡,𝐻(𝑡)=3+(1/𝑡)1+𝑡𝑛+4+ln1+𝑀2+𝑡21+𝑡𝑛+3+𝑡2,𝑔(𝑡)=1𝑡3𝑡𝑛+4ln1+𝑡3𝑡,(𝑡,𝑢,𝑣,𝑤)0,+×3.(3.2) It is clear that (2.1)–(2.4) hold. Consequently, Theorem 2.1 ensures that (3.1) has uncountably many bounded positive solutions in 𝑈(𝑀). But Theorem in [1], Theorems  2.1 and 2.3 in [6], Theorems  1 and 3 in [7], and Theorems  1 and 3 in [8] are null for (3.1).

Example 3.2. Consider the higher-order nonlinear neutral delay differential equation: 𝑑𝑛𝑑𝑡𝑛𝑡𝑥(𝑡)21+3𝑡2𝑥𝑡+𝑡22𝑡21+7𝑡2𝑥𝑡2+𝑑4𝑡𝑛1𝑑𝑡𝑛12+𝑡4𝑥2(𝑡(1/𝑡))1+𝑡6+𝑡2𝑥2(𝑡(1/𝑡))1+𝑡41+𝑡𝑥22𝑡2+𝑡𝑡3𝑥2𝑡2𝑡𝑡2𝑥3(𝑡ln(1+𝑡))1+𝑡𝑛+42+sin2𝑡3𝑥𝑡2𝑥𝑡4=(𝑡ln(1+𝑡))1+𝑡1+𝑡𝑛+41𝑡+𝑡2ln(1+2|𝑡|),𝑡1.(3.3) Let 𝑡0=𝑡1=1,𝑝0=13/21,𝑚=2,𝑘=2,𝑀=400,𝑁=100,𝜈=4, 𝑝1𝑡(𝑡)=21+3𝑡2,𝑝2(𝑡)=2𝑡21+7𝑡2,𝜏1(𝑡)=𝑡+𝑡2,𝜏2(𝑡)=𝑡2𝛼4𝑡,11(𝑡)=𝑡𝑡,𝛼2(𝑡)=2𝑡2𝑡,𝛽1(𝑡)=𝑡2𝑡,𝛽2(𝑡)=𝑡ln(1+𝑡),𝑓(𝑡,𝑢,𝑣)=2+𝑡4𝑢21+𝑡6+𝑡2𝑢21+𝑡41+𝑡𝑣2𝑡,(𝑡,𝑢,𝑣)=3𝑢2𝑡2𝑣31+𝑡𝑛+42+sin2𝑡3𝑢𝑣4𝐹(𝑡)=2+𝑡4𝑀21+𝑡6+𝑡2𝑀21+𝑡41+𝑡𝑁2𝑡,𝐻(𝑡)=3+𝑀2+𝑡2𝑀32+2𝑡𝑛+4,𝑔(𝑡)=1+𝑡1+𝑡𝑛+41𝑡+𝑡2𝑡ln(1+2|𝑡|),(𝑡,𝑢,𝑣)0,+×2.(3.4) It is easy to verify that (2.1)–(2.3) and (2.34) hold. Consequently, Theorem 2.2 guarantees that (3.3) has uncountably many bounded positive solutions in 𝑈(𝑀). But Theorem in [1], Theorem  1 in [4], Theorem  2.3 in [6], Theorem  3 in [7], and Theorem  3 in [8] are useless for (3.3).

Example 3.3. Consider the higher-order nonlinear neutral delay differential equation: 𝑑𝑛𝑑𝑡𝑛𝑡𝑥(𝑡)+41+𝑡2+4𝑡4𝑥𝑡4++12ln1+𝑡21+3ln1+𝑡2𝑥2+ln2𝑡+𝑑𝑛1𝑑𝑡𝑛1𝑡+𝑥3𝑡3+2𝑡2(1)𝑛𝑡2𝑥𝑡sin21+𝑡5+𝑡2𝑥4𝑡2+𝑡3𝑥2(𝑡2)+𝑡2𝑥5(𝑡2)1+𝑡𝑛+51+𝑡𝑥2𝑡2=ln(1+𝑡)𝑡(1)𝑛ln1+1+𝑡2𝑡𝑛+(5/2)+1+cos2𝑡,𝑡2.(3.5) Let 𝑡0=𝑡1=2,𝑝0=11/12,𝑚=2,𝑘=2,𝑀=24,𝑁=1,𝜈=0, 𝑝1𝑡(𝑡)=41+𝑡2+4𝑡4,𝑝2(𝑡)=2ln1+𝑡21+3ln1+𝑡2,𝜏1(𝑡)=𝑡4+1,𝜏2(𝑡)=2+ln2𝛼𝑡,1(𝑡)=𝑡3+2𝑡2,𝛼2(𝑡)=𝑡2,𝛽1(𝑡)=𝑡2,𝛽2(𝑡)=𝑡2ln(1+𝑡),𝑓(𝑡,𝑢,𝑣)=𝑡+𝑢3(1)𝑛𝑡2sin𝑣1+𝑡5+𝑡2𝑣4𝑡,(𝑡,𝑢,𝑣)=3𝑢2+𝑡2𝑢51+𝑡𝑛+51+𝑡𝑣2,𝐹(𝑡)=𝑡+𝑀3+𝑡21+𝑡5+𝑡2𝑁4𝑡,𝐻(𝑡)=3+𝑀2+𝑡2𝑀51+𝑡𝑛+51+𝑡𝑁2,𝑔(𝑡)=𝑡(1)𝑛ln1+1+𝑡2𝑡𝑛+(5/2)+1+cos2𝑡𝑡,(𝑡,𝑢,𝑣)0,+×2.(3.6) Obviously, (2.1)–(2.3) and (2.37) hold. It follows from Theorem 2.3 that (3.5) has uncountably many bounded positive solutions in 𝑈(𝑀). But Theorem in [1], Theorem  2.2 in [2], Theorem  2.1 in [4], Theorem  2.1 in [6], Theorem  1 in [7], and Theorem  1 in [8] are inapplicable for (3.5).

Acknowledgments

This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (2011) and Changwon National University in 2011.