Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2011 (2011), Article ID 574756, 8 pages
http://dx.doi.org/10.1155/2011/574756
Research Article

Modular Locally Constant Mappings in Vector Ultrametric Spaces

1Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 1541849611, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Received 16 November 2010; Revised 15 February 2011; Accepted 23 February 2011

Academic Editor: Norimichi Hirano

Copyright © 2011 Kamal Fallahi and Kourosh Nourouzi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Priess-Crampe and P. Ribenboim, “Generalized ultrametric spaces. I,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 66, pp. 55–73, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. S. Priess-Crampe and P. Ribenboim, “Generalized ultrametric spaces. II,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 67, pp. 19–31, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. S. Priess-Crampe and P. Ribenboim, “Ultrametric spaces and logic programming,” Journal of Logic Programming, vol. 42, no. 2, pp. 59–70, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. A. K. Seda and P. Hitzler, “Generalized ultrametrics, domains and an application to computational logic,” Irish Mathematical Society Bulletin, no. 41, pp. 31–43, 1998. View at Google Scholar
  5. M. Krötzsch, “Generalized ultrametric spaces in quantitative domain theory,” Theoretical Computer Science, vol. 368, no. 1-2, pp. 30–49, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. M. Vâjâitu and A. Zaharescu, “Groups of isometries on ultrametric spaces,” Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, vol. 44(92), no. 2, pp. 183–191, 2001. View at Google Scholar · View at Zentralblatt MATH
  7. L. Gajić, “Metric locally constant function on some subset of ultrametric space,” Novi Sad Journal of Mathematics, vol. 35, no. 1, pp. 123–125, 2005. View at Google Scholar · View at Zentralblatt MATH
  8. M. Vâjâitu and A. Zaharescu, “Metric locally constant functions,” Acta et Commentationes Universitatis Tartuensis de Mathematica, no. 6, pp. 29–36, 2002. View at Google Scholar · View at Zentralblatt MATH
  9. K. Nourouzi, “Vector ultrametric spaces and a fixed point theorem for correspondences,” submitted to Numerical Functional Analysis and Optimization.
  10. W. M. Kozlowski, Modular Function Spaces, vol. 122 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1988.
  11. J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983.