Abstract

Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋 and also 𝑇𝐴𝐵𝐴𝐵 and 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴. We are going to consider element 𝑥𝐴 such that 𝑑(𝑥,𝑇𝑥)𝑑(𝐴,𝐵)+𝜖 for some 𝜖>0. We call pair (𝐴,𝐵) an approximate best proximity pair. In this paper, definitions of approximate best proximity pair for a map and two maps, their diameters, 𝑇-minimizing a sequence are given in a metric space.

1. Introduction

Let 𝑋 be a metric space and 𝐴 and 𝐵 nonempty subsets of 𝑋, and 𝑑(𝐴,𝐵) is distance of 𝐴 and 𝐵. If 𝑑(𝑥0,𝑦0)=𝑑(𝐴,𝐵), then the pair (𝑥0,𝑦0) is called a best proximity pair for 𝐴 and 𝐵 and put prox(𝐴,𝐵)={(𝑥,𝑦)𝐴×𝐵𝑑(𝑥,𝑦)=𝑑(𝐴,𝐵)}(1.1) as the set of all best proximity pair (𝐴,𝐵). Best proximity pair evolves as a generalization of the concept of best approximation. That reader can find some important result of it in [14].

Now, as in [5] (see also [4, 611]), we can find the best proximity points of the sets 𝐴 and 𝐵, by considering a map 𝑇𝐴𝐵𝐴𝐵 such that 𝑇(𝐴)𝐵 and 𝑇(𝐵)𝐴. Best proximity pair also evolves as a generalization of the concept of fixed point of mappings. Because if 𝐴𝐵, every best proximity point is a fixed point of 𝑇.

We say that the point 𝑥𝐴𝐵 is an approximate best proximity point of the pair (𝐴,𝐵), if 𝑑(𝑥,𝑇𝑥)𝑑(𝐴,𝐵)+𝜖, for some 𝜖>0.

In the following, we introduce a concept of approximate proximity pair that is stronger than proximity pair.

Definition 1.1. Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋 and 𝑇𝐴𝐵𝐴𝐵 a map such that 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴. put 𝑃𝑎𝑇(𝐴,𝐵)={𝑥𝐴𝐵𝑑(𝑥,𝑇𝑥)𝑑(𝐴,𝐵)+𝜖forsome𝜖>0}.(1.2) We say that the pair (𝐴,𝐵) is an approximate best proximity pair if 𝑃𝑎𝑇(𝐴,𝐵).

Example 1.2. Suppose that 𝑋=𝐑2, 𝐴={(𝑥,𝑦)𝑋(𝑥𝑦)2+𝑦21}, and 𝐵={(x,𝑦)𝑋(𝑥+𝑦)2+𝑦21} with 𝑇(𝑥,𝑦)=(𝑥,𝑦) for (𝑥,𝑦)𝑋. Then 𝑑((𝑥,𝑦),𝑇(𝑥,𝑦))𝑑(𝐴,𝐵)+𝜖 for some 𝜖>0. Hence 𝑃𝑎𝑇(𝐴,𝐵).

2. Approximate Best Proximity

In this section, we will consider the existence of approximate best proximity points for the map 𝑇𝐴𝐵𝐴𝐵, such that 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴, and its diameter.

Theorem 2.1. Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋. Suppose that the mapping 𝑇𝐴𝐵𝐴𝐵 is satisfying 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴, and lim𝑛𝑑𝑇𝑛𝑥,𝑇𝑛+1𝑥=𝑑(𝐴,𝐵)forsome𝑥𝐴𝐵.(2.1) Then the pair (𝐴,𝐵) is an approximate best proximity pair.

Proof. Let 𝜖>0 be given and 𝑥𝐴𝐵 such that lim𝑛𝑑(𝑇𝑛𝑥,𝑇𝑛+1𝑥)=𝑑(𝐴,𝐵); then there exists 𝑁0>0 such that 𝑛𝑁0𝑇𝑑𝑛𝑥,𝑇𝑛+1𝑥<𝑑(𝐴,𝐵)+𝜖.(2.2) If 𝑛=𝑁0, then 𝑑(𝑇𝑁0(𝑥),𝑇(𝑇𝑁0(𝑥)))<𝑑(𝐴,𝐵)+𝜖, and 𝑇𝑁0(𝑥)𝑃𝑎𝑇(𝐴,𝐵) and 𝑃𝑎𝑇(𝐴,𝐵).

Theorem 2.2. Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋. Suppose that the mapping 𝑇𝐴𝐵𝐴𝐵 is satisfying 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴 and 𝑑[𝑑](𝑇𝑥,𝑇𝑦)𝛼𝑑(𝑥,𝑦)+𝛽(𝑥,𝑇𝑥)+𝑑(𝑦,𝑇𝑦)+𝛾𝑑(𝐴,𝐵)(2.3) for all 𝑥,𝑦𝐴𝐵, where 𝛼,𝛽,𝛾0 and 𝛼+2𝛽+𝛾<1. Then the pair (𝐴,𝐵) is an approximate best proximity pair.

Proof. If 𝑥𝐴𝐵, then 𝑑𝑇𝑥,𝑇2𝑥𝛼𝑑(𝑥,𝑇𝑥)+𝛽𝑑(𝑥,𝑇𝑥)+𝑑𝑇𝑥,𝑇2𝑥+𝛾𝑑(𝐴,𝐵).(2.4) Therefore, 𝑑𝑇𝑥,𝑇2𝑥𝛼+𝛽𝛾1𝛽𝑑(𝑥,𝑇𝑥)+1𝛽𝑑(𝐴,𝐵).(2.5) Now if 𝑘=(𝛼+𝛽)/(1𝛽), then 𝑑𝑇𝑥,𝑇2𝑥𝑘𝑑(𝑥,𝑇𝑥)+(1𝑘)𝑑(𝐴,𝐵)(2.6) also 𝑑𝑇2𝑥,𝑇3𝑥𝑘2𝑑(𝑥,𝑇𝑥)+1𝑘2𝑑(𝐴,𝐵).(2.7) Therefore, 𝑑𝑇𝑛𝑥,𝑇𝑛+1𝑥𝑘𝑛𝑑(𝑥,𝑇𝑥)+(1𝑘𝑛)𝑑(𝐴,𝐵),(2.8) and so 𝑑𝑇𝑛𝑥,𝑇𝑛+1𝑥𝑑(𝐴,𝐵),as𝑛.(2.9) Therefore, by Theorem 2.1, 𝑃𝑎𝑇(𝐴,𝐵); then pair (𝐴,𝐵) is an approximate best proximity pair.

Definition 2.3. Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋. Suppose that the mapping 𝑇𝐴𝐵𝐴𝐵 is satisfying 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴. We say that the sequence {𝑧𝑛}𝐴𝐵 is T-minimizing if lim𝑛𝑑𝑧𝑛,𝑇𝑧𝑛=𝑑(𝐴,𝐵).(2.10)

Theorem 2.4. Let 𝐴 and 𝐵 be nonempty subsets of a metric space 𝑋, suppose that the mapping 𝑇𝐴𝐵𝐴𝐵 is satisfying 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴. If {𝑇𝑛𝑥} is a T-minimizing for some 𝑥𝐴𝐵, then (𝐴,𝐵) is an approximate best pair proximity.

Proof. Since lim𝑛𝑑𝑇𝑛𝑥,𝑇𝑛+1𝑥=𝑑(𝐴,𝐵)forsome𝑥𝐴𝐵,(2.11) therefore, by Theorem 2.1, 𝑃𝑎𝑇(𝐴,𝐵); then pair (𝐴,𝐵) is an approximate best proximity pair.

Theorem 2.5. Let 𝐴 and 𝐵 be nonempty subsets of a normed space 𝑋 such that 𝐴𝐵 is compact. Suppose that the mapping 𝑇𝐴𝐵𝐴𝐵 is satisfying 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴, 𝑇 is continuous and 𝑇𝑥𝑇𝑦𝑥𝑦,(2.12) where (𝑥,𝑦)𝐴×𝐵. Then 𝑃𝑎𝑇(𝐴,𝐵) is nonempty and compact.

Proof. Since 𝐴𝐵 compact, there exists a 𝑧0𝐴𝐵 such that 𝑧0𝑇𝑧0=inf𝑧𝐴𝐵𝑧𝑇𝑧() If 𝑧0𝑇𝑧0>𝑑(𝐴,𝐵), then 𝑇𝑧0𝑇2𝑧0<𝑧0𝑇𝑧0 which contradict to the definition of 𝑧0, (𝑇𝑧0𝐴𝐵 and by (*) 𝑇𝑧0𝑇(𝑇𝑧0)𝑧0𝑇𝑧0). Therefore, 𝑧0𝑇𝑧0=𝑑(𝐴,𝐵)𝑑(𝐴,𝐵)+𝜖 for some 𝜖>0 and 𝑧0𝑃𝑎𝑇(𝐴,𝐵). Therefore, 𝑃𝑎𝑇(𝐴,𝐵) is nonempty.
Also, if {𝑧𝑛}𝑃𝜖𝑇(𝐴,𝐵), then 𝑧𝑛𝑇𝑧𝑛<𝑑(𝐴,𝐵)+𝜖, for some 𝜖>0, and by compactness of 𝐴𝐵, there exists a subsequence 𝑧𝑛𝑘 and a 𝑧0𝐴𝐵 such that 𝑧𝑛𝑘𝑧0 and so 𝑧0𝑇𝑧0=lim𝑘𝑧𝑛𝑘𝑇𝑧𝑛𝑘<𝑑(𝐴,𝐵)+𝜖(2.13) for some 𝜖>0, hence 𝑃𝑎𝑇(𝐴,𝐵) is compact.

Example 2.6. If 𝐴=[3,1],𝐵=[1,3], and 𝑇𝐴𝐵𝐴𝐵 such that 𝑇(𝑥)=1𝑥2,𝑥𝐴,1𝑥2,𝑥𝐵,(2.14) then 𝑃𝑎𝑇(𝐴,𝐵) is compact, and we have 𝑃𝑎𝑇(𝐴,𝐵)={𝑥𝐴𝐵𝑑(𝑥,𝑇𝑥)<𝑑(𝐴,𝐵)+𝜖forsome𝜖>0}={𝑥𝐴𝐵𝑑(𝑥,𝑇𝑥)<2+𝜖forsome𝜖>0}={1,1}.(2.15) That is compact.

In the following, by diam(𝑃𝑎𝑇(𝐴,𝐵)) for a set 𝑃𝑎𝑇(𝐴,𝐵), we will understand the diameter of the set 𝑃𝑎𝑇(𝐴,𝐵).

Definition 2.7. Let 𝑇𝐴𝐵𝐴𝐵 be a continuous map such that 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴 and 𝜖>0. We define diameter 𝑃𝑎𝑇(𝐴,𝐵) by 𝑃diam𝑎𝑇(𝐴,𝐵)=sup𝑑(𝑥,𝑦)𝑥,𝑦𝑃𝑎𝑇.(𝐴,𝐵)(2.16)

Theorem 2.8. Let 𝑇𝐴𝐵𝐴𝐵, such that 𝑇(𝐴)𝐵, 𝑇(𝐵)𝐴 and 𝜖>0. If there exists an 𝛼[0,1] such that for all (𝑥,𝑦)𝐴×𝐵𝑑(𝑇𝑥,𝑇𝑦)𝛼𝑑(𝑥,𝑦),(2.17) then 𝑃diam𝑎𝑇(𝐴,𝐵)2𝜖+1𝛼2𝑑(𝐴,𝐵).1𝛼(2.18)

Proof. If 𝑥,𝑦𝑃𝑎𝑇(𝐴,𝐵), then 𝑑(𝑥,𝑦)𝑑(𝑥,𝑇𝑥)+𝑑(𝑇𝑥,𝑇𝑦)+𝑑(𝑇𝑦,𝑦)𝜖1+𝛼𝑑(𝑥,𝑦)+2𝑑(𝐴,𝐵)+𝜖2.(2.19) Put 𝜖=Max{𝜖1,𝜖2}, therefore, 𝑑(𝑥,𝑦)2𝜖/(1𝛼)+(2𝑑(𝐴,𝐵))/(1𝛼). Hence diam(𝑃𝑎𝑇(𝐴,𝐵))2𝜖/(1𝛼)+(2𝑑(𝐴,𝐵))/(1𝛼).

3. Approximate Best Proximity for Two Maps

In this section, we will consider the existence of approximate best proximity points for two maps 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵, and its diameter.

Definition 3.1. Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋,𝑑) and let 𝑇𝐴𝐵𝐴𝐵𝑆𝐴𝐵𝐴𝐵 two maps such that 𝑇(𝐴)𝐵, 𝑆(𝐵)𝐴. A point (𝑥,𝑦) in 𝐴×𝐵 is said to be an approximate-pair fixed point for (𝑇,𝑆) in 𝑋 if there exists 𝜖>0𝑑(𝑇𝑥,𝑆𝑦)𝑑(𝐴,𝐵)+𝜖.(3.1) We say that the pair (𝑇,𝑆) has the approximate-pair fixed property in 𝑋 if 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵), where 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵)={(𝑥,𝑦)𝐴×𝐵𝑑(𝑇𝑥,𝑆𝑦)𝑑(𝐴,𝐵)+𝜖forsome𝜖>0}.(3.2)

Theorem 3.2. Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋,𝑑) and let 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵 be two maps such that 𝑇(𝐴)𝐵, 𝑆(𝐵)𝐴. If, for every (𝑥,𝑦)𝐴×𝐵, 𝑑(𝑇𝑛(𝑥),𝑆𝑛(𝑦))𝑑(𝐴,𝐵),(3.3) then (𝑇,𝑆) has the approximate-pair fixed property.

Proof. For 𝜖>0, Suppose (𝑥,𝑦)𝐴×𝐵. Since 𝑑(𝑇𝑛(𝑥),𝑆𝑛(𝑦))𝑑(𝐴,𝐵),𝑛0>0s.t.𝑛𝑛0𝑑(𝑇𝑛(𝑥),𝑆𝑛(𝑦))<𝑑(𝐴,𝐵)+𝜖,(3.4) then 𝑑(𝑇(𝑇𝑛1(𝑥),𝑆(𝑆𝑛1(𝑦))<𝑑(𝐴,𝐵)+𝜖 for every 𝑛𝑛0. Put 𝑥0=𝑇𝑛01(𝑥) and 𝑦0=𝑆𝑛01(𝑦)). Hence 𝑑(𝑇(𝑥0),𝑆(𝑦0))𝑑(𝐴,𝐵)+𝜖 and 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵).

Theorem 3.3. Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋,𝑑) and let 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵 be two maps such that 𝑇(𝐴)𝐵, 𝑆(𝐵)𝐴 and, for every (𝑥,𝑦)𝐴×𝐵, 𝑑[𝑑](𝑇x,𝑆𝑦)𝛼𝑑(𝑥,𝑦)+𝛽(𝑥,𝑇𝑥)+𝑑(𝑦,𝑆𝑦)+𝛾𝑑(𝐴,𝐵),(3.5) where 𝛼,𝛽,𝛾0 and 𝛼+2𝛽+𝛾<1. Then if 𝑥 is an approximate fixed point for 𝑇, or 𝑦 is an approximate fixed point for 𝑆, then 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵).

Proof. If (𝑥,𝑦)𝐴×𝐵, then 𝑑[𝑑](𝑇𝑥,𝑆(𝑇𝑥))𝛼𝑑(𝑥,𝑇𝑥)+𝛽(𝑥,𝑇𝑥)+𝑑(𝑇𝑥,𝑆(𝑇𝑥))+𝛾𝑑(𝐴,𝐵).(3.6) Therefore, 𝑑(𝑇𝑥,𝑆(𝑇𝑥))𝛼+𝛽𝛾1𝛽𝑑(𝑥,𝑇𝑥)+1𝛽𝑑(𝐴,𝐵).(3.7) Now if 𝑘=(𝛼+𝛽)/(1𝛽), then 𝑑(𝑇𝑥,𝑆(𝑇𝑥))𝑘𝑑(𝑥,𝑇𝑥)+(1𝑘)𝑑(𝐴,𝐵)() also 𝑑(𝑆𝑦,𝑇(𝑆𝑦))𝑘𝑑(𝑦,𝑆𝑦)+(1𝑘)𝑑(𝐴,𝐵).() If 𝑥 is an approximate fixed point for 𝑇, then there exists a 𝜖>0 and by (*) 𝑑(𝑇𝑥,𝑆(𝑇𝑥))𝑘𝑑(𝑥,𝑇𝑥)+(1𝑘)𝑑(𝐴,𝐵)𝑘(𝑑(𝐴,𝐵)+𝜖)+(1𝑘)𝑑(𝐴,𝐵)=𝑑(𝐴,𝐵)+𝑘𝜖<𝑑(𝐴,𝐵)+𝜖.(3.8) And (𝑥,𝑇𝑥)𝑃𝑎(𝑇,𝑆)(𝐴,𝐵); also if 𝑦 is an approximate fixed point for 𝑆, then there exists a 𝜖>0 and by (**) 𝑑(𝑆𝑦,𝑇(𝑆𝑦))𝑘𝑑(𝑦,𝑆𝑦)+(1𝑘)𝑑(𝐴,𝐵)𝑘(𝑑(𝐴,𝐵)+𝜖)+(1𝑘)𝑑(𝐴,𝐵)=𝑑(𝐴,𝐵)+𝑘𝜖<𝑑(𝐴,𝐵)+𝜖.(3.9) And (𝑦,𝑆𝑦)𝑃𝑎(𝑇,𝑆)(𝐴,𝐵). Therefore, 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵).

Theorem 3.4. Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋,𝑑) and let 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵 be two continuous maps such that 𝑇(𝐴)𝐵, 𝑆(𝐵)𝐴. If, for every (𝑥,𝑦)𝐴×𝐵, 𝑑(𝑇𝑥,𝑆𝑦)𝛼𝑑(𝑥,𝑦)+𝛾𝑑(𝐴,𝐵),(3.10) where 𝛼,𝛾0 and 𝛼+𝛾=1, also let {𝑥𝑛} and {𝑦𝑛} be as follows: 𝑥𝑛+1=𝑆𝑦𝑛,𝑦𝑛+1=𝑇𝑥𝑛𝑥forsome1,𝑦1𝐴×𝐵,𝑛𝑁.(3.11) If {𝑥𝑛} has a convergent subsequence in 𝐴, then there exists a 𝑥0𝐴 such that 𝑑(𝑥0,𝑇𝑥0)=𝑑(𝐴,𝐵).

Proof. We have 𝑑𝑥𝑛+1,𝑦𝑛+1=𝑑𝑇𝑥𝑛,𝑆𝑦𝑛𝑥𝛼𝑑𝑛,𝑦𝑛+𝛾(𝑑(𝐴,𝐵)𝛼𝑛+1𝑑𝑥0,𝑦0+(1+𝛼++𝛼𝑛)𝛾𝑑(𝐴,𝐵).(3.12) If {𝑥𝑛𝑘}𝑘1 converges to 𝑥1𝐴, that is, 𝑥𝑛𝑘𝑥1, then 𝑑𝑥𝑛𝐾+1,𝑦𝑛𝑘+1𝛼𝑛𝑘+1𝑑𝑥0,𝑦0+1+𝛼++𝛼𝑛𝑘𝛾𝑑(𝐴,𝐵).(3.13) Since 𝑇 is continuous, then 𝑑𝑥𝑛𝑘+1,𝑇𝑥𝑛𝑘𝛾1𝛼𝑑(𝐴,𝐵)=𝑑(𝐴,𝐵).(3.14) Therefore, 𝑑(𝑥1,𝑇𝑥1)=𝑑(𝐴,𝐵).

Definition 3.5. Let 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵 be continues maps such that 𝑇(𝐴)𝐵 and 𝑆(𝐵)𝐴. We define diameter 𝑃𝑎(𝑇,𝑆)(𝐴,𝐵) by 𝑃diam𝑎(𝑇,𝑆)(𝐴,𝐵)=sup{𝑑(𝑥,𝑦)𝑑(𝑇𝑥,𝑇𝑦)𝜖+𝑑(𝐴,𝐵)forsome𝜖>0}.(3.15)

Example 3.6. Suppose 𝐴={(𝑥,0)0𝑥1}, 𝐵={(𝑥,1)0𝑥1}, 𝑇(𝑥,0)=𝑇(𝑥,1)=(1/2,1), and 𝑆(𝑥,1)=𝑆(𝑥,0)=(1/2,0). Then 𝑑(𝑇(𝑥,0),𝑆(𝑦,1))=1 and diam(𝑃𝑎(𝑇,𝑆)(𝐴,𝐵))=diam(𝐴×𝐵)=2.

Theorem 3.7. Let 𝑇𝐴𝐵𝐴𝐵 and 𝑆𝐴𝐵𝐴𝐵 be continuous maps such that 𝑇(𝐴)𝐵, 𝑆(𝐵)𝐴. If there exists 𝑎  𝑘[0,1], 𝑑(𝑥,𝑇𝑥)+𝑑(𝑆𝑦,𝑦)𝑘𝑑(𝑥,𝑦),(3.16) then 𝑃diam𝑎(𝑇,𝑆)𝜖(𝐴,𝐵)+1𝑘𝑑(𝐴,𝐵)1𝑘forsome𝜖>0.(3.17)

Proof. If (𝑥,𝑦)𝑃𝑎(𝑇,𝑆)(𝐴,𝐵), then 𝑑(𝑥,𝑦)𝑑(𝑥,𝑇𝑥)+𝑑(𝑇𝑥,𝑆𝑦)+𝑑(𝑆𝑦,𝑦)𝜖+𝑘𝑑(𝑥,𝑦)+𝑑(𝐴,𝐵).(3.18) Therefore, 𝑑(𝑥,𝑦)𝜖/(1𝑘)+(𝑑(𝐴,𝐵))/(1𝑘). Then diam(𝑃𝑎(𝑇,𝑆)(𝐴,𝐵))𝜖/(1𝑘)+(𝑑(𝐴,𝐵))/(1𝑘).